

Features

- 44 fixed frequencies between 4 MHz and 125 MHz
- Supply voltage of 1.5 V, 1.8 V, 2.5 V and 3.3 V (Contact SiTime for 1.2 V)
- Low power consumption of 2.5 mA typical at 1.8 V
- LVCMOS compatible output
- 1 µA standby current
- 450 fs RMS phase jitter
- Industry-standard packages: 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5 mm (Contact SiTime for 1.6 x 1.2 mm)
- RoHS and REACH compliant, Lead-free, Halogenfree and Antimony-free
- For AEC-Q100 oscillators and >85°C oscillators, refer to SiT1625

Applications

- Industrial, medical and other high temp devices
- Industrial sensors, PLC, metro servos
- Outdoor networking equipment
- Medical video cam
- Asset tracking systems

Electrical Specifications

Table 1. Electrical Characteristics

All Min and Max limits are specified over temperature for all supply voltages with 15 pF output load unless otherwise stated. Typical values are specified at 25°C and at the nominal value of the highest voltage option for that parameter.

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition	
				Frequency F	Range		
Fixed Frequency Options	f	5, 10, 20, 25, 31.25, 33.333333, 50, 62.5, 78.125, 100, 125		MHz	SiT1605A		
		18.432, 19 32, 32.76	96, 6, 8, 8.192, 9, 12, 16, 18, 32, 19.2, 24, 24.576, 30.72, 32.768, 36, 38.4, 48, 61.44, 64, 72, 76.8, 96, 122.88			SiT1605B	
		7, 13, 21	, 27, 39, 63,	, 91, 117		SiT1605C	
			Freque	ency Stabilit	y and Agin	9	
Frequency Stability	F_stab	-50	-	+50	ppm	Inclusive of Initial tolerance at 25°C, 1st year aging at 25°C,	
		-25	-	+25		and variations over operating temperature, rated power supply voltage and load (15 pF \pm 10%)	
			Opera	ting Temper	erature Range		
Operating Temperature Range	T_use	-40	-	+85	°C	Industrial Temperature Grade	
		5	Supply Volta	age and Curi	rent Consu	mption	
Supply Voltage	Vdd_1.5	1.35	1.5	1.65	V	Contact SiTime for 1.2 V option (±5%)	
	Vdd_1.8	1.62	1.8	1.98			
	Vdd_2.5	2.25	2.5	2.75			
	Vdd_3.3	2.97	3.3	3.63			
	Vdd_YY	1.62	-	3.63			
Current Consumption	Idd	-	2.5	3.2	mA	f = 27 MHz, no load, Vdd_1.5	
		-	2.5	3.2	mA	f = 27 MHz, no load, Vdd_1.8	
		_	2.6	3.4	mA	f = 27 MHz, no load, Vdd_2.5	
		_	2.7	3.6	mA	f = 27 MHz, no load, Vdd_3.3	
		_	2.7	3.6	mA	f = 27 MHz, no load, Vdd_YY tested at Vdd_3.3	
Standby Current	I_std	-	0.15	0.6	uA	Up to 85°C, $\overline{ST} = 0$	

Table 1. Electrical Characteristics (continued)

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition
			LVCM	OS Output (Characteri	stics
Duty Cycle	DC	48	-	52	%	All Vdd levels
Rise/Fall Time	Tr, Tf	-	-	2.3	ns	Vdd = 1.62 V - 3.63 V, 20% - 80%, 15 pF Load, f = 27 MHz
Output High Voltage	VOH	90%	-	-	Vdd	IOH = -4 mA (Vdd = 3.0 V or 3.3 V) IOH = -3 mA (Vdd = 2.8 V and Vdd = 2.5 V) IOH = -2 mA (Vdd = 1.8 V) IOH = -1.5 mA (Vdd = 1.5 V)
Output Low Voltage	VOL	-	-	10%	Vdd	IOL = 4 mA (Vdd = 3.0 V or 3.3 V) IOL = 3 mA (Vdd = 2.8 V and Vdd = 2.5 V) IOL = 2 mA (Vdd = 1.8 V) IOL = 1.5 mA (Vdd = 1.5 V)
				Input Chara	cteristics	
Input High Voltage	VIH	70%	-	-	Vdd	Pin 1, OE or ST
Input Low Voltage	VIL	-	-	30%	Vdd	Pin 1, OE or ST
Input Pull-down Impedance	Z_in	2	-	-	MΩ	Pin 1, OE or ST or NC
			Star	tup and Res	sume Timi	ng
Startup Time	T_start	-	0.5	0.7	ms	Measured from the time Vdd reaches its rated minimum value
Enable/Disable Time	T_oe	-	-	150	ns	f = 27 MHz. For other frequencies, T_oe = 100 ns + 3*cycles
Resume Time (Standby)	T_resume	-	0.5	0.7	ms	
Resume Time (Mid-Standby)		-	0.1	0.11	ms	
			J	itter and Ph	ase Noise	
RMS Period Jitter ^[1]	T_jitt	-	1	1.2	ps	f = 27 MHz, measured based on 10K cycles, Vdd = 1.8V
RMS Phase Jitter (random) ^[2]	T_phj_fc_2	-	0.45	0.700	ps	f = 27 MHz, 12 kHz – 20 MHz integration bandwidth, phase noise measured 12 kHz – 10 MHz and extended flat above 10 MHz
	T_phj_5	-	0.33	0.625]	f = 27 MHz, 12 kHz – 5 MHz integration bandwidth, phase noise measured 12 kHz – 5 MHz
	T_phj_fc48	-	0.42	0.700		f = 48 MHz, 12 kHz – 20 MHz integration bandwidth, phase noise measured 12 kHz –to 20 MHz
Phase Noise	PN	-	-145	-	dBc/Hz	f = 27 MHz, f_offset = 100 kHz
Spurious Phase Noise	T_spn	-	-85	-	dBc	f = 27 MHz, 1.8 V, 12 kHz – 13.5 MHz integration bandwidth
Power Supply-Induced Noise Sensitivity	PSNS	-	0.8	-	ps/mV	50 mV peak-peak on supply voltage 3.3 V

Notes:

1. Appropriate when driving digital logic for use in setup and hold time equations.

2. Appropriate when driving phase locked loops in high-speed SerDes applications.

Table 2. Absolute Maximum Limits

Operation outside the absolute maximum ratings may cause permanent damage to the part.

Performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
Supply Voltage (Vdd)	-0.5	4	V
Electrostatic Discharge (HBM)	-	2000	V
Electrostatic Discharge (CDM)	-	750	V
Soldering Temperature (follow standard Pb free soldering guidelines) ^[3]	-	260	°C
Junction Temperature ^[4]	-	150	°C

Notes:

3. Please refer to SiTime Manufacturing Notes.

4. Exceeding this temperature for extended period of time may damage the device.

Table 3. Thermal Considerations^[5]

Package	θ _{JA} (°C/W)	θ _{JB} (°C/W)	θ _{JC} (°C/W)	Ψ _{JT} (°С/W)
3225	208	76	134	15.7
2520	187	78	133	16.4
2016	190	75	167	14.9
1612	TBD	TBD	TBD	TBD

Note:

5. θ_{JA}, Ψ_{JT}, θ_{JB} and θ_{JC} are provided according to JEDEC standards 51-2A, 51-7, 51-8, and 51-12.01 with a 25°C ambient and 36.3 mW power consumption. The conduction thermal resistances θ_{JB} and θ_{JC} are obtained with the assumption that all heat flows from the junction to a heat sink through either the solder pads (θ_{JB}) or the top of the package (θ_{JC}). The values of θ_{JA} and Ψ_{JT} are strongly application dependent, and we report values based on the JEDEC thermal environment of 2s2p board and still air. θ_{JA} is the thermal resistance to ambient on a JEDEC PCB - it is a conservative estimate, since the JEDEC board does not have vias to PCB planes in the vicinity of the package. Ψ_{JT} can be used to estimate the junction temperature from accurate measurements of the temperature at the top of the package if the thermal environment is similar to the JEDEC environment.

Table 4. Maximum Operating Junction Temperature^[6]

Max Operating Temperature (ambient)	Maximum Operating Junction Temperature		
85°C	95°C		

Note:

6. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.

Table 5. Environmental Compliance

Parameter	Condition/Test Method
Mechanical Shock	MIL-STD-883F, Method2002
Mechanical Vibration	MIL-STD-883F, Method 2007
Temperature Cycle	JESD22, Method A104
Solderability	MIL-STD-883F, Method2003
Moisture Sensitivity Level	MSL1 @ 260°C

Device Configurations and Pin-outs

Pin Description

Figure 1. Pin Assignments (Top View)

Table 6. Pin Description

Pin	Symbol		Function
		Output Enable (OE)	H ^[7] : specified frequency output L: output is high impedance. Only output driver is disabled
1	OE/ ST / NC Stability (ST)		H ^[7] : specified frequency output L: output is low (weak pull down). Device goes to sleep mode
		No Connect (NC)	Any voltage between GND and Vdd or Open ^[8] . Specified frequency output. Pin 1 has no function.
2	GND	Power	Electrical ground ^[8]
3	OUT	Output	Oscillator output
4	VDD	Power	Power supply voltage ^[8]

Notes:

7. In OE or ST mode, a pull-up resistor of 10 KΩ or less is recommended if pin 1 is not externally driven. If pin 1 needs to be left floating, use the NC option.

8. A capacitor of value 0.1 μ F between VDD and GND is required.

Test Circuit and Waveform

Figure 2. Test Circuit^[9]

Figure 3. Waveform^[9]

Note:

9. Duty Cycle is computed as Duty Cycle = TH/Period.

Timing Diagrams

Figure 4. Startup Timing (OE/ ST Mode)^[10]

T_oe: Time to re-enable the clock output

Figure 6. OE Enable Timing (OE Mode Only)

Note:

10. SiT1605 has "no runt" pulses and "no glitch" output during startup or resume.

Figure 5. Standby Resume Timing (ST Mode Only)^[10]

Figure 7. OE Disable Timing (OE Mode Only)

Programmable Drive Strength

The SiT1605 includes a programmable drive strength feature to provide a simple, flexible tool to optimize the clock rise/fall time for specific applications. Benefits from the programmable drive strength feature are:

- Improves system radiated electromagnetic interference (EMI) by slowing down the clock rise/fall time.
- Improves the downstream clock receiver's (RX) jitter by decreasing (speeding up) the clock rise/fall time.
- Ability to drive large capacitive loads while maintaining full swing with sharp edge rates.

Table 1 reflects the default drive strength which is optimized for fastest rise/fall times.

For more detailed information about rise/fall time control and drive strength selection, contact SiTime.

Dimensions and Patterns

Dimensions and Patterns (continued)

Notes:

11. Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.

12. A capacitor of value 0.1 $\ensuremath{\mathsf{pF}}$ or higher between VDD and GND is required.

Ordering Information

The part number guide illustrated below is for reference only, in which boxes identify order codes having more than one option. To customize and build an exact part number, use the SiTime Part Number Generator. To validate the part number, use the SiTime Part Number Decoder.

Note:

13. The voltage portion of the SiT1605 part number consists of a two-digit number that denotes the specific supply voltage of the device. Alternatively, "YY" can be used to indicate the entire operating voltage range from 1.62 V to 3.63 V.

Table 7. Part Number and Supported Frequencies^[14]

	Frequency Range (MHz)						
SiT1	605A	SiT1605B				SiT1605C	
5.000000	50.000000	4.000000	16.000000	32.000000	72.000000	7.000000	39.000000
10.000000	62.500000	4.096000	18.000000	32.768000	76.800000	13.000000	63.000000
20.000000	78.125000	6.000000	18.432000	36.000000	96.000000	21.000000	91.000000
25.000000	100.000000	8.000000	19.20000	38.400000	122.880000	27.000000	117.000000
31.250000	125.000000	8.192000	24.000000	48.000000	-	-	-
33.333333	-	9.000000	24.576000	61.440000	-	-	-
-	-	12.000000	30.720000	64.000000	-	-	-

Notes:

14. Any frequency the table above is supported with 6 decimal places of accuracy.

Table 8. Ordering Codes for Supported Tape & Reel Packing Method

Device Size (mm x mm)	8 mm T&R (3ku)	8 mm T&R (1ku)	8 mm T&R (250u)
1.6 x 1.2	D	E	G
2.0 x 1.6	D	E	G
2.5 x 2.0	D	E	G
3.2 x 2.5	D	E	G

Instant Samples with Time Machine II and Field Programmable Oscillator

SiTime supports a field programmable version of the SiT1605 for fast prototyping and real time customization of features. The field programmable devices (FP devices) are available for all standard SiT1605 package sizes and can be configured to one's exact specification using the Time Machine II.

For more information regarding SiTime's field programmable solutions, see Time Machine II and Field Programmable devices.

SiT1605 is typically factory-programmed per customer ordering codes for volume delivery.

Additional Information

Table 9. Additional Information

Document	Description	Download Link
Time Machine II	Asterix programmer for engineering samples	http://www.sitime.com/support/time-machine-oscillator-programmer
Field Programmable Oscillators	Devices that can be programmable in the field by Time Machine II	http://www.sitime.com/products/field-programmable-oscillators
Manufacturing Notes	Tape & Reel dimension, reflow profile and other manufacturing related info	https://www.sitime.com/sites/default/files/gated/Manufacturing-Notes- for-SiTime-Products.pdf
Qualification Reports	RoHS report, reliability reports, composition reports	http://www.sitime.com/support/quality-and-reliability
Performance Reports	Additional performance data such as phase noise, current consumption, and jitter for selected frequencies	http://www.sitime.com/support/performance-measurement-report
Termination Techniques	Termination design recommendations	http://www.sitime.com/support/application-notes
Layout Techniques	Layout recommendations	http://www.sitime.com/support/application-notes

Revision History

Table 10. Revision History

Version	Release Date	Change Summary
0.1	3-Feb-2022	Initial release
0.22	15-Aug-2022	General Updates
0.23	21-Sep-2022	Additional updates on typos
0.24	30-Oct-2022	Formatting updates
0.25	9-Dec-2022	Adjusted frequency and package options Updated jitter and phase noise specifications
0.52	19-Apr-2023	Added 1612 package option
0.6	30-Jun-2023	Preliminary release, Expanded Supported Frequencies list, Updated Table 1 specs, Added Programmable Drive Strength section, Changed Phase Jitter spec, Reorganized sections
0.7	28-Jun-2024	Added 1.2V support for 2016 package. Updated Table 1 and Ordering Table for 1.2V support.
0.71	6-Sep-2024	Updated Electrical Characteristics (Current Consumption, Jitter and Phase Noise, other specs updated, reorganized sections), Ordering Information, Table 3 and Table 4
1.0	10-Jun-2025	Production Release

SiTime Corporation, 5451 Patrick Henry Drive, Santa Clara, CA 95054, USA | Phone: +1-408-328-4400 | Fax: +1-408-328-4439

© SiTime Corporation 2022-2025. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. This product is not suitable or intended to be used in a life support application or component, to operate nuclear facilities, in military or aerospace applications, or in other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS: USED IN LIFE SUPPORT DEVICES, TO OPERATE NUCLEAR FACILITIES, FOR MILITARY OR AEROSPACE USE, OR IN OTHER MISSION CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

For aerospace and defense applications, SiTime recommends using only Endura™ ruggedized products.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.