

Description

Block Diagram

The SiT91281 is a low jitter, automotive grade clock generator engineered for automotive applications where reliability and environmental robustness are critical. It comes with a single clock domain, 4 configurable differential or 8 single-ended low skew outputs, and clock status/alarm reporting.

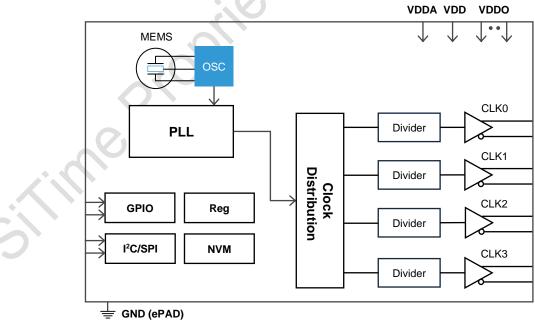
The SiT91281 integrates SiTime's MEMS resonator, eliminating the need for an external oscillator or resonator. This integrated MEMS improves system reliability by eliminating traditional clock generators' dependence on quartz and its associated issues like high failure rates and matching requirements.

The device is configurable in output frequency, output style (differential and LVCMOS) and individual Output Enables through the serial interface. Internal monitoring features help improve system Functional Safety metrics by using the General Purpose I/O (GPIO) pins and device registers to report fault conditions to a safety manager MCU.

The SiT91281 is compliant with PCIe Generation 1-6 including configurable spread-spectrum clocking.

User-defined, pre-programmed and user-programmable Non-volatile memory (NVM) enables a high degree of flexibility and defined startup-configuration. Configurable GPIO pins support state changes such as individual output enable selection.

Features


Frequencies from 1 MHz to 700 MHz

ADVANCE

- Fully integrated MEMS-based clock source
- Configurable clock domain and 4 differential outputs or 8 single-ended outputs
- AEC-Q100 Grade 1, -40°C to 125°C
- Excellent frequency stability:
 - ±50 ppm (-40°C to 125°C)
 - ±20 ppm (-40°C to 105°C)
 - Contact SiTime for ±30 ppm (-40°C to 125°C)
- Clock fault monitors (Loss of Lock, Loss of MEMS clock, Output Driver Errors, Die Temperature)
- Supply voltage of 1.8 V to 3.3 V
- Configurable spread-spectrum clock generation
- Low phase jitter, 200 fs maximum (12 kHz-20 MHz)
- PCIe Gen 1 to 6 compliant
- Resistant to shock/vibration
- QFN 24 pin 4 x 4 mm, 0.5 mm pitch (wettable flank) package

Applications

- ADAS Computer, Zonal ECU, Domain ECU
- Lidar, Radar Sensors
- Automotive High-Speed Networking and SerDes
- Infotainment/Digital Cockpit systems

Figure 1. SiT91281 Block Diagram

19 December 2023

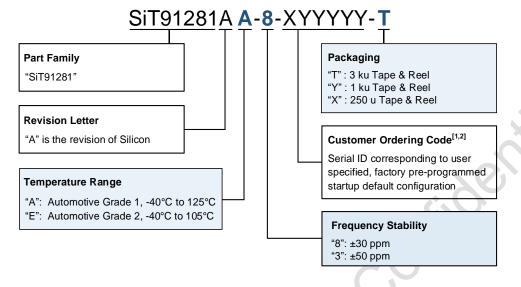


Table Of Contents

Description		. 1
Features		. 1
Applications		. 1
Block Diagram		. 1
Ordering Information		. 3
Functional Description		. 4
Chip Status Monitoring		. 5
General Purpose Inputs		. 5
Electrical Characteristics		
FlexSwing Configurations		13
Test Circuit Diagrams	······	15
Test Setups for LVPECL Measurements		
Test Setups for FlexSwing Measurements ^[10]		
Test Setups for LVDS Measurements		17
Test Setups for HCSL Measurements		
Test Setups for Low-Power HCSL Measurements		
Waveform Diagrams		
Termination Diagrams		
LVPECL and FlexSwing Termination		
LVDS, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V t		
HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V t		
Low-power HCSL, Supply Voltage: 1.8 V \pm 5%, 2.5 V \pm 10%, 3.3 V \pm 10		
Operating Temperature and Thermal Characteristics		
Package Pin-Out and Description (Preliminary)		
Dimensions and Patterns		
Additional Information		
Revision History		29
Stimerophe		

Ordering Information

Notes:

- 1. X = "A" and "B" customer device, "C to "Z" reserved. A: Denotes blank devices.
 - Propiletanyany B: Denotes Pre-configured devices, contact SiTime for the specifics.
 - 2. Y = 0..9, A...Z for custom serial ID.

Functional Description

The SiT91281 is an automotive Grade 1 low-jitter clock generator with an integrated SiTime MEMS resonator, capable of providing 4 configurable differential or 8 singleended low skew outputs, or a combination of both. Differential outputs can be configured up to 700 MHz, while single ended outputs can be configured up to 220 MHz. Due to the integrated MEMS resonator, the device can be operated without the need for any external crystal or oscillator reference or associated matching requirements.

The output drivers support commonly used signal formats, such as LVPECL, LVDS, HCSL, LVCMOS, as well as FlexSwing. Individual VDDO pins capable of accepting between 1.8 V and 3.3 V are available for each differential output driver, The core voltage supply (VDD) accepts 3.3 V, 2.5 V, or 1.8 V and is independent from the output supplies (VDDOx).

The SiT91281 combines SiTime's highly reliable MEMS resonator with a wideband PLL, on-chip temperature compensation, and four integer dividers to generate high-performance outputs with typical jitter of 150 fs and frequency stability of ± 20 ppm (-40°C to 105°C) or ± 30 ppm (-40°C to 125°C). The SiT91281's on-chip regulators ensure extremely good power supply noise rejection, ensuring minimal deviation from the jitter specification due to power supply noise. Spread spectrum modulation is available in the SiT91281, to help reduce electromagnetic interference (EMI) by spreading output clock energy over a broader range.

The elimination of an external reference leads to improved ease of use by removing any matching or frequency jump issues. Importantly for safety critical automotive applications, all dependence on crystals prone to high failure rates is eliminated. In addition to improved failure rates, internal functions such as the MEMS reference clock, bandgap reference, PLL, and VDDIOs, and output drivers are monitored. This is a significant improvement over traditional status monitoring of only the reference input. Fault conditions on these monitored functions can be configured to be sent out to GPIO outputs individually or as a combined alarm signal or read via I2C or SPI interface. This allows an external safety manager MCU to be alerted to a fault condition in the clock generator to take appropriate action consistent with system level safety goals.

The SiT91281 is available optionally with or without a serial interface (I2C or SPI). The serial interface can be used to read internal registers, including status of the internal monitoring functions. A user can use In-System Configuration (ISC) mode to write to contents of internal registers to modify the device configuration via the serial interface. In such a use case, the modified configuration will be lost at the next power cycle. The SiT91281 allows the user to burn the new configuration into the NVM via the In-System Programming (ISP) Mode, which will then be the new default configuration at the next power cycle.

Optionally, the user can store up to four different static clock configurations in the SiT91281 NVM, one of which is selectable based on the status continuously sampled on the two Frequency Select pins.

For applications which require only a standard configuration, the SiT91281 is also available as a factory configured device without a serial interface, which allows the use of the serial interface pins as additional GPIOs. SiTime will program the NVM to configure the devices according to specific customer requirements.

Chip Status Monitoring

The SiT91281 monitors multiple internal parameters and makes these status monitoring functions available to an external MCU via GPIO pins or through direct access of internal registers via I2C/SPI. All the status signals listed in the table below are also accessible via register reads over the serial interface (I2C or SPI).

Table 1. Chip Status Monitoring Signals

Monitoring Function	Monitored on GPIO Pin (Parts without I2C/SPI)	Monitored on GPIO Pin (Parts with I2C/SPI)	Function
MEMS Clock Monitor	Pin 2 / 3 / 4 / 6 / 7 / 23 / 24	Pin 2 / 3 / 23 / 24	Goes low when internal MEMS clock does not oscillate
Bandgap Monitor	Pin 2 / 3 / 4 / 6 / 7 / 23 / 24	Pin 2 / 3 / 23 / 24	Goes low when internal band gap reference falls below threshold
PLL Lock Monitor	Pin 2 / 3 / 4 / 6 / 7 / 23 / 24	Pin 2 / 3 / 23 / 24	Goes low when PLL loses lock with MEMS reference clock
Clock0 Ready	Pin 2	Pin 2	Goes low when Clock0 driver is not toggling / has a fault
Clock1 Ready	Pin 3	Pin 3	Goes low when Clock1 driver is not toggling / has a fault
Clock2 Ready	Pin 23	Pin 23	Goes low when Clock2 driver is not toggling / has a fault
Clock3 Ready	Pin 24	Pin 24	Goes low when Clock3 driver is not toggling / has a fault
Clock01 Ready	Pin 6	-	Goes low when Clock0 or Clock1 driver are not toggling / have a fault
Clock23 Ready	Pin 7	-	Goes low when Clock2 or Clock3 driver are not toggling / have a fault
VDDO0 Good	Pin 2	Pin 2	Goes low when VDDO0 supply is below NVM-configured threshold
VDDO1 Good	Pin 3	Pin 3	Goes low when VDDO1 supply is below NVM-configured threshold
VDDO2 Good	Pin 23	Pin 23	Goes low when VDDO2 supply is below NVM-configured threshold
VDDO3 Good	Pin 24	Pin 24	Goes low when VDDO3 supply is below NVM-configured threshold
All Clocks Ready	Pin 2 / 3 / 4 / 6 / 7 / 23 / 24	Pin 2 / 3 / 23 / 24	Goes low when any enabled clock output is not toggling / has a fault
Alarm_B	Pin 2 / 3 / 4 / 6 / 7 / 23 / 24	Pin 2 / 3 / 23 / 24	Goes low when any fault is triggered
ISP_Burn_Success	Pin 4	(Access via register read)	Asserted when in-system NVM burn is successful
VDDO01 Good	Pin 6	-	Goes low when VDDO0 or VDDO1 are below NVM-configured thresholds
VDDO23 Good	Pin 7	-	Goes low when VDDO2 or VDDO3 are below NVM-configured thresholds
Die Temperature Out of Range	Accessible via regi	ster reads only	Asserted if die temperature is outside NVM-configured range. Available via direct register access through I2C/SPI
General Purpo	se Inputs	201	

General Purpose Inputs

Table 2. User Configurable Input Signals^[3]

Input Function	Available on GPIO Pin (Parts without I2C/SPI)	Available on GPIO Pin (Parts with I2C)	Available on GPIO Pin (Parts with SPI)	Function
SSEN / SSEN	Pin 1 / 3 / 4 / 8	Pin 1 / 3 / 4	Pin 1 / 3	Spread Spectrum enabled on all outputs (configurable active high or low)
OE0 / OE0	Pin 2 / 3	Pin 2 / 3	Pin 2 / 3	Enable Output 0 (configurable active high or low)
OE1 / OE1	Pin 2 / 3	Pin 2 / 3	Pin 2 / 3	Enable Output 1 (configurable active high or low)
OE2 / OE2	Pin 1 / 6 / 7	Pin 1 / 6 / 7	Pin 1 / 6	Enable Output 2 (configurable active high or low)
OE3 / OE3	Pin 1 / 6 / 7	Pin 1 / 6 / 7	Pin 1 / 6	Enable Output 3 (configurable active high or low)
OE_all / OE_all	Pin 2 / 7	Pin 2 / 7	Pin 2	Enable all Outputs (configurable active high or low)
FS0	Pin 9 / 23	Pin 23	Pin 23	Frequency Select 0
FS1	Pin 8 / 24	Pin 24	Pin 24	Frequency Select 1

Note:

3. The I²C and SPI pins can be reconfigured, in factory, as GPIO pins. Such parts (without the I²C or SPI interface) can be ordered directly only from SiTime.

Electrical Characteristics

All Min and Max limits in the Electrical Characteristics tables are specified over operating temperature and rated operating voltage with standard output termination shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage. See Test Circuit Diagrams for the test setups used with each signaling type.

Table 3. Electrical Characteristics – Common to All Output Signaling Types

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
	1		1	Frequency R	ange	
	f			700	MHz	Differential clock outputs LVDS, LVPECL, FlexSwing
Output Frequency Range	f			350	MHz	Differential clock outputs HCSL LPHCSL
	f			220	MHz	Single-ended (LVCMOS) clock outputs
				Frequency Sta	ability	
Frequency Stability		-	-	±20	ppm	Inclusive of initial tolerance, operating temperature range -40°C to 105°C, rated power supply voltage, load variation of 2 pF \pm 10%, and 10 years aging at 85°C
Contact SiTime for ±30 ppm		_	_	±50	ppm	Inclusive of initial tolerance, operating temperature range -40°C to 125°C, rated power supply voltage, load variation of 2 pF \pm 10%, and 10 years aging at 85°C
	•			Temperature F	Range	
	_	-40	_	+105	°C	Automotive Grade 2 Temperature Range
Operating Temperature Range	T_use	-40	-	+125	°C	Automotive Grade 1 Temperature Range
	•			Supply Volt	age	
		1.71	1.80	1.89	V	
Supply Voltage		2.25	2.50	2.75	V	
		2.97	3.30	3.63	V	
				Core Curre	ent	
Core Current	ldd	-	-	55	mA	Total current consumed on the VDD and VDDA power domains
				Input Characte	ristics	
Input Voltage High	VIH	70%	_	-	Vdd	Logic High function for all input pins
Input Voltage Low	VIL	_	_	30%	Vdd	Logic High function for all input pins
			(Output Charact	eristics	
Duty Cycle	DC	45	_	55	%	See Figure 13 for waveform
2, 0,0.0	20	10	Sta	artup, OE and S		
Startup Time	T_start	_ •	1.2	2	ms	Measured from the time Vdd reaches its rated minimum value
Output Enable Time	T_oe	Ģ		600+1 clock cycles	ns	For all signaling types. Measured from the time OE pin toggles to enable logic level to the time clock pins reach 90% of final swing. See Figure 19 for waveform
Output Disable Time	T_od	K	-	600+1 clock cycles	ns	Measured from the time OE pin toggles to disable logic level to the last clock edge. See Figure 20 for waveform
	~	Jitter	and Phas	e Noise, meas	ured at f =	= 156.25 MHz
RMS Phase Jitter ("4-16A")	T_phj	-	115	-	fs	"4-16A" 4 MHz to 16 MHz offset frequency integration bandwidth with aliasing
RMS Phase Jitter (random)	T_phj	-	150	200	fs	12 kHz to 20 MHz offset frequency integration bandwidth
Spurious Phase Noise	T_spn	-	-	-95	dBc	12 kHz to 20 MHz offset frequency range
RMS Period Jitter ^[4]	T_jitt_per	-	0.5	0.6	ps	Measured based on 10K cycle
Peak Cycle-to-cycle Jitter ^[4]	T_jitt_cc	-	3.5	6.2	ps	Measured based on 1K cycle
			Syn	chronization ar	nd Timing	
Output Skew	t _{SK,B}			150	ps	
			Spre	ad-Spectrum G	eneration	1
Center Spread		-0.125		+0.125	%	
		-0.25		+0.25	%	
		-0.5		+0.5	%	
Down Spread		-0.25		0	%	
-		-0.5		0	%	
Modulation Rate		31.05	31.25	31.45	kHz	

Note:

4. Measured according to JESD65B using Keysight DSAX91604A Oscilloscope.

Table 4. Electrical Characteristics – LVPECL | See Figure 2 and Figure 3 for test setups. Current consumption only accounts for
VDDO and output driver stage. Measurements are with VDDO = 3.3 V or 2.5 V.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition			
				nption, f = 1	56.25 MH	łz			
Current Consumption, Output nabled without Termination	ldd_oe_nt	-	-	25	mA	Excluding load termination current VDDO = 3.3 V			
Current Consumption, Output	ldd_od_nt	-	-	13	mA	Excluding load termination current VDDO = 3.3 V, outputs are Hi-Z			
urrent Consumption, Output		_	_	38	mA	Including load termination current as shown in Figure 24 for Vdd=3.3 V $\pm 10\%$ and R3 = 220 Ohms			
nabled with Termination 1	Idd_oe_wt1	-	-	36	mA	Including load termination current as shown in Figure 24 for Vdd=2.5 V $\pm 10\%$ and R3 = 220 Ohms			
urrent Consumption Output	ldd od ut1	-		26	mA	Including load termination current as shown in Figure 24 for Vdd=3.3 V ±10% and R3 = 220 Ohms. Driver output is held at last clock output levels			
isabled with Termination 1	Idd_od_wt1	-	-	24	mA	Including load termination current as shown in Figure 24 for Vdd=2.5 V ±10% and R3 = 220 Ohms. Driver output is held at last clock output levels			
urrent Consumption, Output nabled with Termination 2	Idd_oe_wt2	-	-	53	mA	Including load termination current. VDDO = 3.3 V. See Figure 25 for termination			
current Consumption, Output visabled with Termination 2	ldd_od_wt2	-	-	41	mA	Including load termination current. See Figure 25 for termination. Driver output is held at last clock output levels			
			Output	Characteri	stics				
output High Voltage	VOH	Vdd-1.075	Vdd-0.95	Vdd-0.86	V	See Figure 12 for waveform			
output Low Voltage	VOL	Vdd-1.84	Vdd-1.7	Vdd-1.62	V	See Figure 12 for waveform			
Output Differential Voltage Swing	V_Swing	1.4	-	1.8	V	See Figure 13 for waveform			
ise/Fall Time	Tr, Tf	-	210	300	ps	20% to 80%. See Figure 13 for waveform			
ifferential Asymmetry, peak-peak	V_da	-	-	85	mV	See Figure 15 for waveform			
ifferential Skew, peak	V_ds	-	-	±25	ps	See Figure 16 for waveform			
vershoot Voltage, peak	V_ov	-	-	12	%	Measured as percent of V_Swing See Figure 17 for waveform			
		Powe	r Supply N	oise Immur	nity (VDD				
		_		10	fs/mV	Power supply ripple from 10 kHz to 20 MHz			
ower Supply-Induced Jitter ensitivity	PSJS	-		TBD	fs/mV	Power supply ripple from 10 kHz to 20 MHz Using RC power supply filter as shown in Figure 2			
		-	9-	-85	dBc	50 mV peak-peak ripple on VDD			
ower Supply-Induced Phase loise	PSPN		-	TBD	dBc	50 mV peak-peak ripple on VDD Using RC power supply filter as shown in Figure 2			
STIME	2<0	X							

Table 5. Electrical Characteristics – FlexSwing | See Figure 4 and Figure 5 for test setups. Current consumption only accounts for VDDO and output driver stage.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
			Currei	nt Consump	otion	
Current Consumption, Output Enabled without Termination	ldd_oe_nt	-	Ι	25	mA	Excluding load termination current
Current Consumption, Output Disabled without Termination	ldd_od_nt	-	I	13	mA	Excluding load termination current
Current Consumption, Output		-	-	35	mA	Including load termination current, for FlexSwing code "ER" See Figure 24 for Vdd = 3.3 V \pm 10% and R3 = 220 Ohms
Enabled with Termination	Idd_oe_wt	_	_	35	mA	Including load termination current, for FlexSwing code "ER" See Figure 24 for Vdd = $2.5 V \pm 10\%$, and R3 = $220 Ohms$
Current Consumption Output	ldd od ut	-	_	23	mA	Including load termination current, for FlexSwing code "ER" See Figure 24 for Vdd = $3.3 V \pm 10\%$ and R3 = 220 Ohms. Driver output is held at last clock output levels
Disabled with Termination	ldd_od_wt	-	-	23	mA	Including load termination current, for FlexSwing code "ER" See Figure 24 for Vdd = $2.5 V \pm 10\%$, and R3 = 220 Ohms. Driver output is held at last clock output levels
			Output	t Characteri	stics	
Output High Voltage	VOH	VHn -0.13	VHn	VHn +0.1	V	See Figure 12 for waveform; Refer to Table 10 or Table 11 order codes for nominal VOH (i.e. VHn) values
Output Low Voltage	VOL	VLn -0.13	VLn	VLn +0.12	V	See Figure 12 for waveform; Refer to Table 10 or Table 11 order codes for nominal VOL (i.e. VLn) values
Output Differential Voltage Swing	V_Swing	-0.2	2*(VHn- VLn)	+0.2	v	See Figure 13 for waveform
Rise/Fall Time	Tr, Tf	-	170	300	ps	20% to 80%. See Figure 13 for waveform
Differential Asymmetry, peak-peak	V_da	-	-	100	mV	See Figure 15 for waveform
Differential Skew, peak	V_ds	-	-	±25	ps	See Figure 16 for waveform
Overskeet Veltere neek	V av	_	_	12	%	Measured as percent of V_Swing.
Overshoot Voltage, peak	V_ov	-	-	12	%	See Figure 17 for waveform
		Pow	er Supply	Noise Imm	unity (VD	DO)
Power Supply-Induced Jitter	PSJS	-	6	10	fs/mV	Power supply ripple from 10 kHz to 20 MHz. For FlexSwing code "ER"
Sensitivity	F 3 J 3	-		TBD	fs/mV	Power supply ripple from 10 kHz to 20 MHz. For FlexSwing code "ER". Using RC power supply filter shown in Figure 4
Power Supply-Induced Phase	PSPN	-	0-	-85	dBc	50 mV peak-peak ripple on VDDO. For FlexSwing code "ER"
Noise	POPN	-	-	TBD	dBc	50 mV peak-peak ripple on VDDO. For FlexSwing code "ER". Using RC power supply filter shown in Figure 4
stime						

Table 6. Electrical Characteristics – LVDS | See Figure 6 and Figure 7 for test setups. Current consumption only accounts for VDDO and output driver stage.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
				t Consump	tion	
Current Consumption, Output Enabled without Termination	ldd_oe_nt	-		25	mA	Excluding load termination current
Current Consumption, Output Disabled without Termination	ldd_od_nt	-		13	mA	Excluding load termination current
Current Consumption, Output Enabled with Termination	Idd_oe_wt	-		29	mA	Including load termination current. See Figure 28 for termination
Current Consumption Output Disabled with Termination	Idd_od_wt	-		17	mA	Including load termination current. See Figure 28 for termination. Driver output is held at last clock output levels
			Output	Characteris	stics	
Differential Output Voltage	VOD	250	360	450	mV	See Figure 14 for waveform
Delta VOD	ΔVOD	-	-	50	mV	See Figure 14 for waveform
	VOS	1.125	1.25	1.375	V	See Figure 14 for waveform. VDDO = 3.3 V and 2.5 V
Offset Voltage	VUS	1.0	-	1.05	V	See Figure 14 for waveform VDDO = 1.8 V
Delta VOS	ΔVOS	-	_	50	mV	See Figure 14 for waveform
Rise/Fall Time	Tr, Tf	-	-	250	ps	Measured 20% to 80% using Figure 28 for termination. See Figure 13 for waveform
Differential Asymmetry, peak-peak	V_da	-	-	50	mV	See Figure 15 for waveform
Differential Skew, peak	V_ds	-	-	±50	ps	See Figure 16 for waveform
Overshoot Voltage, peak	V_ov	-	-	10	%	Measured as percent of VOD. See Figure 18 for waveform
		Pow	er Supply N	loise Immu	nity (VDD	00)
Power Supply-Induced Jitter	PSJS	-	-	10	fs/mV	Power supply ripple from 10 kHz to 20 MHz
Sensitivity	PSJS	-	-	TBD	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 6
Power Supply-Induced Phase	PSPN	-	-	-85	dBc	50 mV peak-peak ripple on VDDO
Noise	PSPN	-		TBD	dBc	50 mV peak-peak ripple on VDDO. Using RC power supply filter as shown in Figure 6

Table 7. Electrical Characteristics – HCSL | See Figure 8 and Figure 9 for test setups. Current consumption only accounts for VDDO and output driver stage.

Parameter	0	NA:	T	N	11-14-								
	Symbol	Min.	Typ.	Max. nt Consum	Unit ntion	Condition							
Current Consumption, Output Enabled without Termination	ldd_oe_nt	_	-	25	mA	Excluding load termination current							
Current Consumption, Output Disabled without Termination	ldd_od_nt	-	-	13	mA	Excluding load termination current							
			Output	Characteri	stics								
Output High Voltage	VOH	0.60	0.7	0.95	V	See Figure 12 for waveform							
Output Low Voltage	VOL	-0.1	0	0.1	V	See Figure 12 for waveform							
Output Differential Voltage Swing	V_Swing	1.1	1.4	1.6	V	See Figure 13 for waveform							
Rise/Fall Time	Tr, Tf	-	170	300	ps	Measured 20% to 80%. See Figure 13 for waveform							
Differential Asymmetry, peak-peak	V_da	-	-	65	mV	See Figure 15 for waveform							
Differential Skew, peak	V_ds	-	-	±25	ps	See Figure 16 for waveform							
Overshoot Voltage, peak	V_ov	-	-	10	%	Measured as percent of V_Swing. See Figure 17 for waveform							
Power Supply Noise Immunity (VDDO)													
	10 fs/mV Power supply ripple from 10 kHz to 20 MHz												
Power Supply-Induced Jitter Sensitivity	PSJS	_	_	TBD	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 8							
Device Comply Induced Direct		-	-	-85	dBc	50 mV peak-peak ripple on VDDO							
Power Supply-Induced Phase Noise	PSPN	-	-	TBD	dBc	50 mV peak-peak ripple on VDDO. Using RC power supply filter as shown in Figure 8							
					U.								

Table 8. Electrical Characteristics – Low-Power HCSL | See Figure 10 and Figure 11 for test setups. Current consumption only accounts for VDDO and output driver stage.

Parameter													
Current Consumption Output	Symbol	Min.	Тур.	Max. nt Consum	Unit	Condition							
Current Consumption, Output													
Enabled without Termination	ldd_oe_nt	-	-	25	mA	Excluding load termination current							
Current Consumption, Output Disabled without Termination	ldd_od_nt	-	_	13	mA	Excluding load termination current							
	1		Output	Character	istics	T							
Output High Voltage	VOH	-	-	1.1	V	See Figure 12 for waveform							
Output Low Voltage	VOL	-0.1	0	0.1	V	See Figure 12 for waveform							
Output Differential Voltage Swing	V_Swing	1.4	1.83	2.0	V	See Figure 13 for waveform							
Rise/Fall Time	Tr, Tf	-	-	80	ps	Measured 20% to 80%. See Figure 13 for waveform							
Differential Asymmetry, peak-peak	V_da	-	-	85	mV	See Figure 15 for waveform							
Differential Skew, peak	V_ds	-	-	±30	ps	See Figure 16 for waveform							
Overshoot Voltage, peak	V_ov	-	-	10	%	Measured as percent of V_Swing. See Figure 17 for waveform							
	1	Pow	er Supply	Noise Imm	unity (VD								
		-		10	fs/mV	Power supply ripple from 10 kHz to 20 MHz							
Power Supply-Induced Jitter Sensitivity	PSJS	_	_	TBD	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 10							
		_	_	-85	dBc	50 mV peak-peak ripple on VDDO							
Power Supply-Induced Phase Noise	PSPN	_	_	TBD	dBc	50 mV peak-peak ripple on VDDO. Using RC power supply filter as shown in Figure 10							
stime		Sil	3.0										

Table 9. Electrical Characteristics – Low-Voltage CMOS | Current consumption only accounts for VDDO and output driver stage.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
			Currei	nt Consum	otion	
Current Consumption, Output Enabled	ldd_oe	-	-	14	mA	VDDO = 3.3 V, output frequency 20 MHz, load = 8 pF
Current Consumption, Output Disabled	ldd_od	I	-	12	mA	VDDO = 3.3 V
		Outpu	t Character	ristics (Star	ndard LVC	CMOS)
Output High Voltage	VOH	90%	-	-	VDDO	IOH = -4 mA, VDDO = 3.3 V
Output Low Voltage	VOL	-	-	10%	VDDO	IOL = 4 mA, VDDO = 3.3 V
Rise/Fall Time	Tr, Tf	_	0.4	0.6	ns	Measured 20% to 80%, output frequency 20 MHz, load = 8 p SiT91281 has programmable options for rise-time & fall-time
Duty Cycle		45	_	55	%	Measured in percentage of clock period
Overshoot Voltage, peak	V_ov	_	-	10	%	Measured as percent of difference between VOH and VOL
		Output (Characteris	tics (Regul	ated LVCI	MOS)
Output High Voltage Regulated Range	VDDOreg	0.9	-	VDDO-0.3	V	Regulated VOH can be programmed with up to 20 steps
Output High Voltage Regulated Range	VOH	90%	-	-	VDDOreg	IOH = -4 mA, VDDO = 3.3 V
Output Low Voltage	VOL	-	-	10%	VDDreg	IOL = 4 mA, VDDO = 3.3 V
Rise/Fall Time	Tr, Tf	-	0.4	0.6	ns	Measured 20% to 80%, output frequency 20 MHz, load = 8 p SiT91281 has programmable options for rise-time & fall-time
Overshoot Voltage, peak	V_ov	-	-	10	%	Measured as percent of difference between VOH and VOL
		Pov	ver Supply	Noise Imm	unity (VDI	
Power Supply-Induced Jitter Sensitivity	PSJS	_	-	20	fs/mV	Power supply ripple from 10 kHz to 20 MHz
Power Supply-Induced Phase Noise	PSPN	-	_	TBD	dBc	50 mV peak-peak ripple on VDDO
		2	2			
0.						
Silime						

FlexSwing Configurations

A FlexSwing output-driver performs like LVPECL and additionally provides independent control of voltage swing and DC offset voltage levels. This simplifies interfacing with chipsets having non-standard input voltage requirements and can eliminate all external source-bias resistors. FlexSwing supports power supply voltages from 1.71 V to 3.63 V, and the programmable VOH and VOL levels may be referenced to the voltage on either VDD or GND pins.

			Α	В	с	D	E	F	G	н	J	К	L	м	N	Р	Q	R	S	т	U	v	W	x
		Order Code	>	2	>	2	>	2	>	2	>	2	2	2	2	2	2	2	2	2	2	2	2	2
		/_Swing (V)	2.31	2.26	2.21	2.16	2.11	2.06	2.01	1.96	1.91	1.86	1.82	1.7	1.72	1.67	1.62	1.57	1.52	1.47	1.42	1.37	1.32	1.25
			Vdd-2.31V	Vdd-2.26V	Vdd-2.21V	Vdd-2.16V	Vdd-2.11V	Vdd-2.06V	Vdd-2.01V	Vdd-1.96V	Vdd-1.91V	Vdd-1.86V	Vdd-1.82V	Vdd-1.77V	Vdd-1.72V	Vdd-1.67V	Vdd-1.62V	Vdd-1.57V	Vdd-1.52V	Vdd-1.47V	Vdd-1.42V	Vdd-1.37V	Vdd-1.32V	Vdd-1.28V
	1	T	-	-	-	-	-	-	-	_	AJ	AK	AL	AM	AN	AP		AR	AS	AT	AU	AV	AW	AX
	A										AJ 1.94	AK 1.86	AL 1.77	1.69	1.61	АР 1.52	AQ 1.44	1.35	AS 1.27	1.18	1.10	AV 1.01	0.93	0.85
	в										BJ	BK	BL	BM	BN	BP	BQ	BR	BS	BT	BU	BV	BW	BX
	Ľ									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	c										CJ	СК	CL	CM	CN	СР	CQ	CR	CS	СТ	CU	CV	CW	СХ
	\vdash	-							1.94	1.86	1.77 DJ	1.69 DK	1.61 DL	1.52 DM	1.44 DN	1.35 DP	1.27 DQ	1.18 DR	1.10 DS	1.01 DT	0.93 DU	0.85 DV	0.76 DW	0.68 DX
	D							1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59
	E										EJ	EK	EL	EM	EN	EP	EQ	ER	ES	ET	EU	EV	EW	EX
	Ľ						1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.014	0.93	0.85	0.76	0.68	0.59	0.51
	F					4.04	4.00	4 77	4.00		FJ	FK	FL	FM	FN	FP	FQ	FR	FS	FT	FU	FV	FW	0.42
	\vdash	-				1.94	1.86	1.77	1.69	1.61 GH	1.52 GJ	1.44 GK	1.35 GL	1.27 GM	1.18 GN	1.10 GP	1.01 GQ	0.93 GR	0.85 GS	0.76 GT	0.676 GU	0.59 GV	0.51	0.42
	G				1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34
	н								HG	HH	HJ	НК	HL	НМ	HN	HP	HQ	HR	HS	HT	HU			
		_		1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25
	1			4.00	4 77	4.00		JF	JG	JH	II T	JK	JL	ML	JN CO CO	JP	JQ	JR	JS	TL			0.05	
	\vdash	7	1.94	1.86	1.77	1.69	1.61 KE	1.52 KF	1.44 KG	1.35 KH	1.27 KJ	1.18 KK	1.10 KL	1.01 KM	0.93 KN	0.85 KP	0.76 KQ	0.68 KR	0.59 KS	0.51	0.42	0.34	0.25	
	ĸ	VLn + V_Swing /	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25		
VHn	L	Swi				LD	LE	LF	LG	LH	IJ	LK	ш	LM	LN	LP	LQ	LR						
•	Ľ		1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25			
	N		1.69	1.61	MC 1.52	MD 1.44	ME 1.35	MF 1.27	MG 1.18	MH 1.10	MJ 1.01	МК 0.93	ML 0.85	MM 0.76	MN 0.68	MP 0.59	MQ 0.51	0.42	0.34	0.25				
	F	-	1.05	NB	NC	ND	NE	NF	NG	NH	NJ	NK	NL	NM	NN	NP	0.51	0.42	0.34	0.23				
	N		1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25					
	Р		PA	PB	PC	PD	PE	PF	PG	PH	PJ	PK	PL	PM	PN									
	ŀ	_	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25						
	q		QA 1.44	QB 1.35	QC 1.27	QD 1.18	QE 1.10	QF 1.01	QG 0.93	QH 0.85	QJ 0.76	QK 0.68	QL 0.59	QM 0.51	0.42	0.34	0.25							
	R	1	RA	RB	RC	RD	RE	RF	RG	RH	RJ	RK	RL						Supple	y Voltag	e Ava	ilable C	olors	
	K		1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25				V±5%		t Suppo		
	s		SA	SB	SC	SD	SE	SF	SG	SH	SJ	SK								to 3.63	-	t Suppo		i
	\vdash	-	1.27 TA	1.18 TB	1.10 TC	1.01 TD	0.93 TE	0.85 TF	0.76 TG	0.68 TH	0.59 TJ	0.51	0.42	0.34	0.25				2.5	/±10%		Blue		
	Т		1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25						/±10%	Blu		Red	
	U	1	UA	UB	UC	UD	UE	UF	UG	UH										to 3.63	/	Blue		
	Ľ		1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25						N	ote 5		Gray		
	V		VA	VB	VC	VD	VE	VF	VG	0.42		0.05												
	\vdash	-	1.01 WA	0.93 WB	0.85 WC	0.76 WD	0.68 WE	0.59 WF	0.51	0.42	0.34	0.25												
	w	/	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25													
L	1	1	0150	0100		0100	-0100	0102		010-1	-0120													

VLn

Table 10. FlexSwing 2-digit Codes specifying VHn and VLn referenced to voltage on VDD pin^[6]

Note:

5. Please contact SiTime.

6. Table based on Y-Bias Termination with R3 = 220. See Figure 24.

The above table identifies supported combinations of nominal VOH (i.e. VHn) and nominal VOL (i.e. VLn) in colored boxes. The two-character code in each box corresponds to the VHn and VLn codes specified in the 2^{nd} column and 2^{nd} row in the table, respectively. The number in each box indicates the nominal differential swing (i.e. VHn – VLn).

For example, order code "FS" selects VHn code "F" (i.e. Vdd-1.144 V) and VLn code "S" (i.e. Vdd-1.530 V) corresponding to a V_Swing of 0.845 V peak-peak, which may be used for supply voltages of $2.5 \text{ V} \pm 10\%$, $3.3 \text{ V} \pm 10\%$ or (2.25 V to 3.63 V). Alternatively, an order code of "GS" corresponds to a VHn code "G" (i.e. Vdd-1.193 V) and a VLn order code "S" (e.g. Vdd-1.530 V) corresponding to a V_Swing of 0.760 V peak-peak, which may be used for a supply voltage of $3.3 \text{ V} \pm 10\%$.

Table 11. FlexSwing 2-digit Codes specifying VHn and VLn referenced to voltage on GND pin

			c	D	E	F	G	н	J	к	L	м	N	Р	Q	R	s	т	U	v	w	x	Y
	der C Swing																						
•	owing	s (V)	0.45V	0.49V	0.54V	0.59V	0.64V	0.69V	0.74V	V07.0	0.84V	0.89V	0.94V	V66.0	1.03V	1.08V	1.16V	1.23V	1.3V	1.38V	1.45V	1.53V	1.6V
	Α																			AV	AW	AX	AY
	^			-																1.94	1.86	1.69	1.61
	в				ly Volta	-		Availa	ble Col											BV 1.86	BW 1.77	BX 1.61	BY 1.52
					8V±5% / to 3.63		range	6	Gr Green	een									CU	CV	CW	CX	CY
	С				V±10%		range	Gree		lue	Purple								1.94	1.77	1.69	1.52	1.44
	D				V±10%		Gre			lue	Red							DT	DU	DV	DW	DX	DY
					/ to 3.63	3V	Gre			Blue								1.94 ET	1.86 EU	1.69 EV	1.61 EW	1.44 EX	1.35 EY
	E			N	lote 7			(Gray									1.86	1.77	1.61	1.52	1.35	1.27
	F																FS	FT	FU	FV	FW	FX	FY
																	1.94 GS	1.77 GT	1.69 GU	1.52 GV	1.44 GW	1.27 GX	1.18 GY
	G															1.94	1.86	1.69	1.61	1.44	1.35	1.18	1.10
	н																HS	HT	HU	HV	HW	НХ	HY
															1.94	1.86	1.77	1.61	1.52	1.35	1.27	1.10	1.01
	L													1.94	1.86	1.77	JS 1.69	JT 1.52	JU 1.44	JV 1.27	JW 1.18	JX 1.01	JY 0.93
														1.94	1.00	1.77	KS	KT	KU	KV	KW	KX	KY
	к												1.94	1.86	1.77	1.69	1.61	1.44	1.35	1.18	1.10	0.93	0.85
	L																LS	LT	LU	LV	LW	LX	LY
												1.94	1.86	1.77	1.69	1.61 MR	1.52 MS	1.35 MT	1.27 MU	1.10 MV	1.01 MW	0.85 MX	0.76 MY
	м										1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.27	1.18	1.01	0.93	0.76	0.68
	N	/2													NQ	NR	NS	NT	NU	NV	NW	NX	NY
		VLn + V_Swing /								1.94	1.86	1.77	1.69	1.61 PP	1.52	1.44	1.35	1.18 PT	1.10	0.93	0.85	0.68	0.59
VHn	Р	s'							1.94	1.86	1.77	1.69	1.61	1.52	PQ 1.44	PR 1.35	PS 1.27	1.10	PU 1.01	PV 0.85	PW 0.76	PX 0.59	РҮ 0.51
		÷							2.0	2.00		2.05	QN	QP	QQ	QR	QS	QT	QU	QV	QW	QX	
	Q	۲						1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.01	0.93	0.76	0.68	0.51	0.42
	R						1.94	1.86	1.77	1.69	1.61	RM 1.52	RN 1.44	RP 1.35	RQ 1.27	RR 1.18	RS 1.10	RT 0.93	RU 0.85	RV 0.68	RW 0.59	0.42	0.34
							1.94	1.00	1.//	1.09	1.01 SL	SM	1.44 SN	1.55 SP	1.27 SQ	1.18 SR	SS	ST	SU	0.68 SV	SW	0.42	0.54
	s					1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.85	0.76	0.59	0.51	0.34	0.25
	т									ТК	TL	TM	TN	ТР	ΤQ	TR	TS	π	TU	TV			
					1.94	1.86	1.77	1.69	1.61 UJ	1.52 UK	1.44 UL	1.35 UM	1.27 UN	1.18 UP	1.10 UQ	1.01 UR	0.93 US	0.76 UT	0.68 UU	0.51	0.42	0.25	
	U			1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.68	0.59	0.42	0.34		
	v							VH	٧J	VK	VL	VM	VN	VP	VQ	VR	VS	VT	VU				
	Ĥ		1.94	1.86	1.77	1.69	1.61 WG	1.52 WH	1.44	1.35	1.27	1.18	1.10	1.01 WP	0.93	0.85	0.76	0.59	0.51	0.34	0.25		
	w		1.86	1.77	1.69	1.61	wG 1.52	WH 1.44	WJ 1.35	WK 1.27	WL 1.18	WM 1.10	WN 1.01	0.93	WQ 0.85	WR 0.76	WS 0.68	WT 0.51	0.42	0.25			
	x					XF	XG	ХН	XJ	ХК	XL	XM	XN	ХР	XQ	XR	XS						
	Ĺ		1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.42	0.34				
	Y		1.69	1.61	YE 1.52	YF 1.44	YG 1.35	YH 1.27	YJ 1.18	ҮК 1.10	YL 1.01	YM 0.93	YN 0.85	YP 0.76	YQ 0.68	YR 0.59	YS 0.51	0.34	0.25				
	H		1.05	1.01 ZD	ZE	1.44 ZF	ZG	2.27 ZH	ZJ	2K	ZL	ZM	2N	ZP	0.68 ZQ	ZR	0.51	0.34	0.25				
	z		1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.25					
	1		10	1D	1E	1F	1G	1H	1J	1K	1L	1M	1N	1P	1Q								
	\vdash		1.52 2C	1.44 2D	1.35 2E	1.27 2F	1.18 2G	1.10 2H	1.01 2J	0.93 2K	0.85 2L	0.76 2M	0.68 2N	0.59 2P	0.51	0.42	0.34						
	2		1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25						
	3		3C	3D	3E	3F	3G	ЗH	3J	ЗК	3L	ЗM	ЗN										
	Ĺ		1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25							

Note: 7. Please contact SiTime.

Test Circuit Diagrams

A 1.5 pF capacitive load is used at each differential output. Because of the additive input capacitance of the active probe used with the oscilloscope, the output characteristics for all signal types are measured with a total of 2 pF capacitive load.

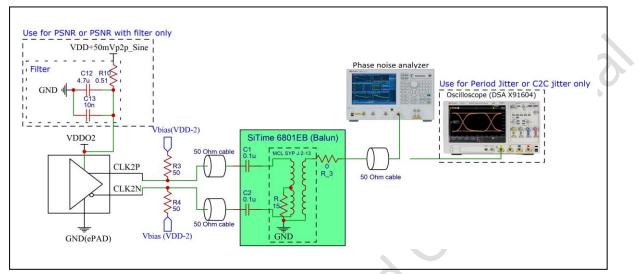


Figure 2. Test setup to measure LVPECL Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) without filter added^[8]

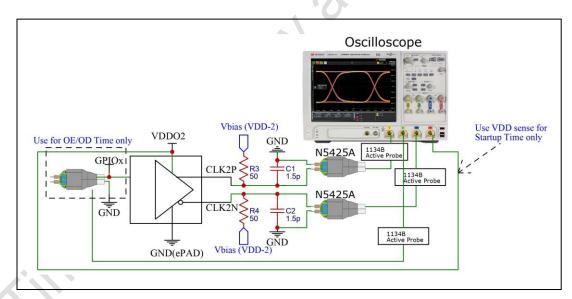


Figure 3. Test setup to measure LVPECL Waveform Characteristics, Current Consumption (with Termination 2)^[9], Output Enable/Disable Time, and Startup Time

Notes:

- 8. See Figure 4 for the test setup to measure LVPECL Power Supply-Induced Phase Noise (PSPN) with filter added.
- 9. See Figure 5 for the test setup to measure LVPECL Current Consumption with Termination 1 or without Termination.

Test Setups for FlexSwing Measurements^[10]

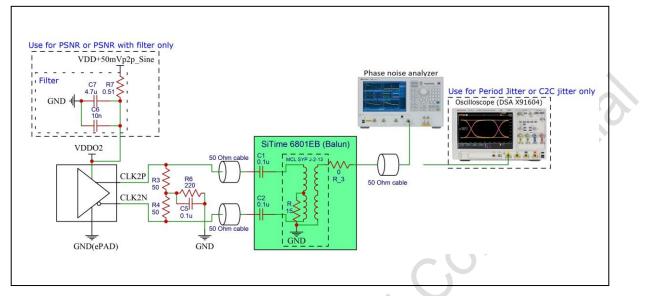


Figure 4. Test setup to measure FlexSwing Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) with and without filter added^[11]

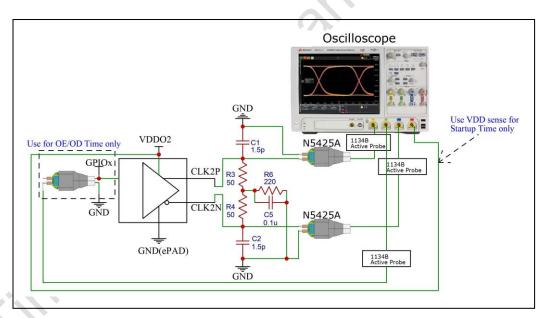


Figure 5. Test setup to measure FlexSwing Waveform Characteristics, Current Consumption^[12], Output Enable/Disable Time, and Startup Time

Note:

- 10. The same test circuits are used for FlexSwing referenced to VDD and FlexSwing referenced to GND.
- 11. Test setup is also used to measure LVPECL Power Supply-Induced Phase Noise (PSPN) with filter added.
- 12. Test setup is also used to measure LVPECL Current Consumption with Termination 1 or without Termination.

Test Setups for LVDS Measurements

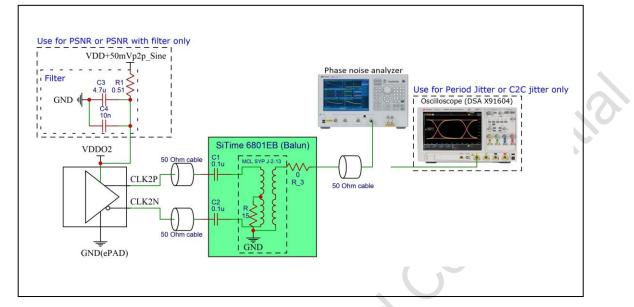
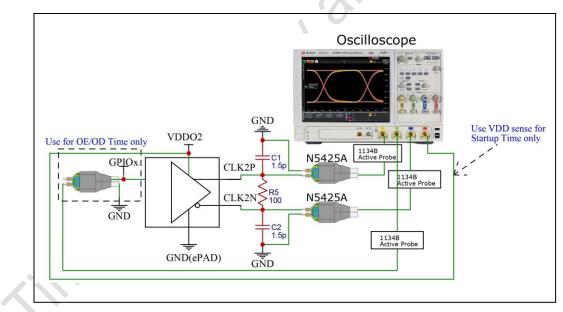



Figure 6. Test setup to measure LVDS Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) with and without filter added

Test Setups for HCSL Measurements

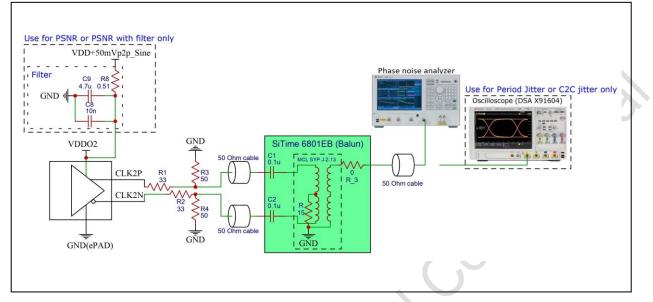


Figure 8. Test setup to measure HCSL Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) with and without filter added

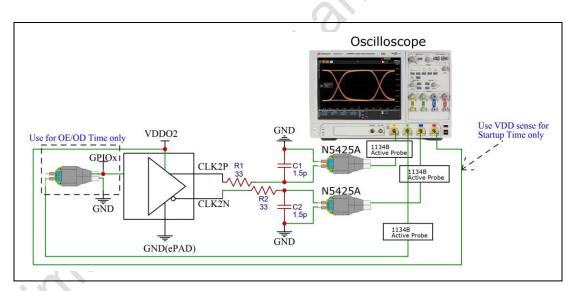


Figure 9. Test setup to measure HCSL Waveform Characteristics, Current Consumption, Output Enable/Disable Time, and Startup Time

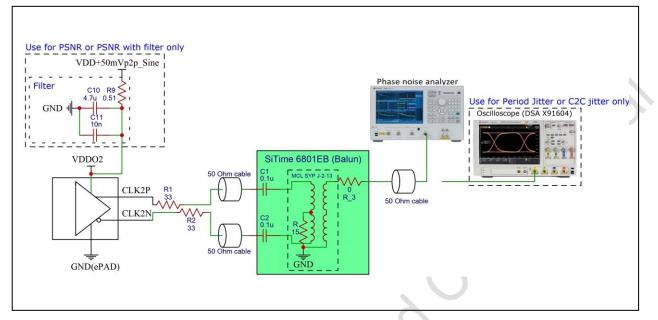


Figure 10. Test setup to measure Low-Power HCSL Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) with and without filter added

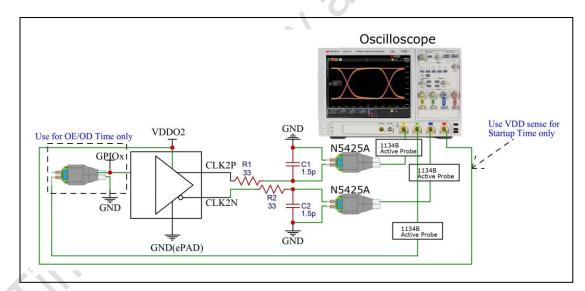
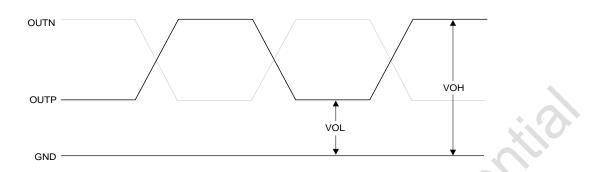



Figure 11. Test setup to measure Low-Power HCSL Waveform Characteristics, Current Consumption, Output Enable/Disable Time, and Startup Time

Waveform Diagrams

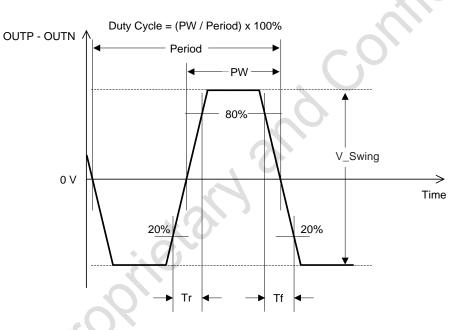
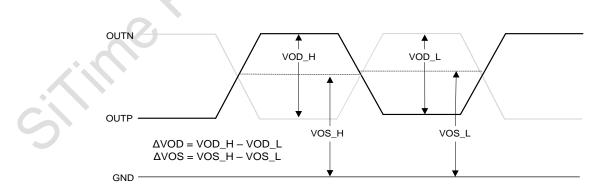



Figure 13. LVPECL, LVDS, HCSL, Low-Power HCSL, and FlexSwing Voltage Levels Across Differential Pair

Waveform Diagrams (continued)

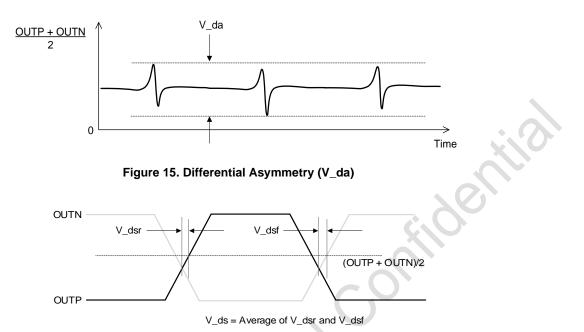
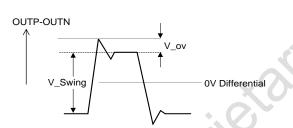
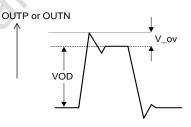
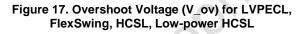





Figure 16. Differential Skew (V_ds) is measured as the Time between the Average Voltage Level and Crossing Voltage

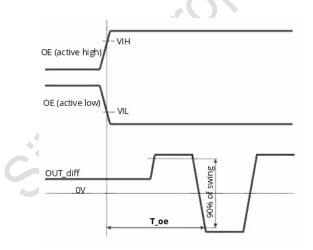


Figure 19. OE Pin Enable Timing (T_oe)

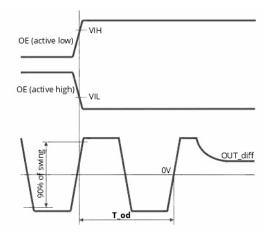


Figure 20. OE Pin Disable Timing (T_od)

Termination Diagrams

LVPECL and FlexSwing Termination

The SiT91281 FlexSwing output drivers support low power without sacrificing signal integrity via simple terminations as shown in Figure 22 and Figure 24, compared to traditional LVPECL drivers. The FlexSwing and LVPECL outputs are

voltage-mode drivers. Use the table and figures below to select a termination circuit for the desired supply voltage. The table also provides LVPECL current consumption (I_load) into the load termination.

Table 12. Termination Options for LVPECL and FlexSwing Signaling

Signaling	Termination Options							
	Figure 21	Figure 22	Figure 23	Figure 24	Figure 25	Figure 26		
LVPECL referenced to Vdd	OK to use I_load = 40 mA with 100 Ω near-end bias resistor	Do Not Use	OK to use I_load = 28 mA	OK to use	OK to use I_load = 28 mA	Do Not Use		
FlexSwing referenced to Vdd		OK to use (see Figure 22 for frequency ranges and voltage swings)	OK to use ^[13]	OK to use	OK to use	Do Not Use		
FlexSwing referenced to Gnd	OK to use ^[13]		Do Not Use Do Not Use	OK to use OK to use	Do Not Use Do Not Use	Do Not Use OK to use		

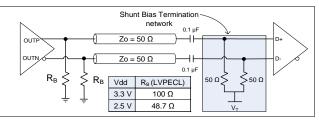
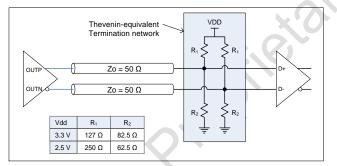



Figure 21. Recommended LVPECL and FlexSwing^[14] Termination when AC-coupled

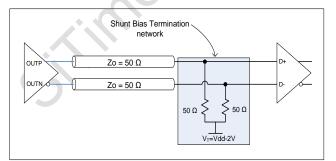


Figure 25. LVPECL and FlexSwing with DC-coupled Parallel Shunt Load Termination

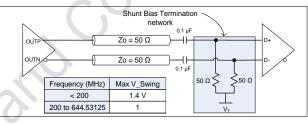


Figure 22. Recommended FlexSwing Termination when AC-coupled

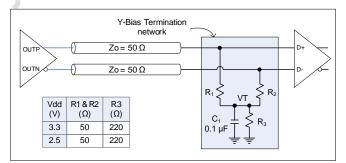


Figure 24. LVPECL and FlexSwing with Y-Bias Termination

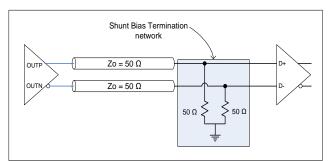


Figure 26. FlexSwing Termination – Only for use with Supply Voltage Order Code "18"

Termination Diagrams (continued)

LVDS, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V

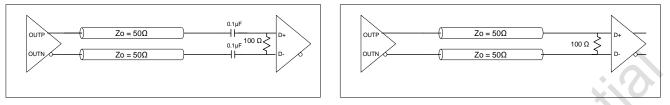


Figure 27. LVDS AC Termination

Figure 28. LVDS DC Termination at the Load

HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V

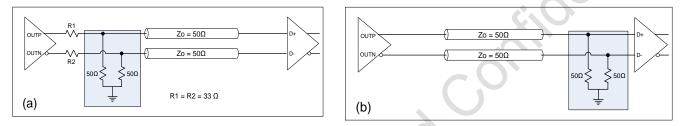


Figure 29. (a) HCSL Source Termination and (b) HCSL Load Termination

Low-power HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V

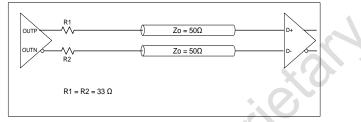


Figure 30. Low-power HCSL Termination

Notes:

- 13. Contact SiTime for optimum R_B values for FlexSwing options.
- 14. Contact SiTime for optimum R1 and R2 values for FlexSwing options.

Operating Temperature and Thermal Characteristics

Table 13. Operating Temperature and Thermal Characteristics

Parameters Ambient Temperature		Min	T	Marr	1 Institute	
Ampient remperature	Symbol	Min. -40	Тур.	Max. 105	Unit ℃	Condition
	TA TA	-40 -40		105 125	°C °C	Automotive Grade 2 Temperature Range
		-40				Automotive Grade 1 Temperature Range
Junction Temperature	TJ			140	°C	
Thermal Resistance Junction to Ambient	θ _{JA}		25.50		°C/W	Still Air
			20.80		°C/W	Air Flow 1m/s
			19.60		°C/W	Air Flow 2m/s
Thermal Resistance Junction to Case	Өлс		8.70		°C/W	
Thermal Resistance Junction to Board	θ _{JB}		7.07		°C/W	
Thermal Resistance Junction to Top Center	ΑLΨ		0.20		°C/W	
stime	2	00	Ø	31	0	

Table 14. Absolute Maximum Limits

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
V _{DD}			V
Electrostatic Discharge, HBM 100 pF, 1.5 k Ω	-	2000	V
Electrostatic Discharge, CDM	-	750	V
Latch up tolerance		JESD78 compliant	
Mechanical Shock Resistance, $\Delta F/F$		10	kG
Mechanical Vibration Resistance, $\Delta F/F$		70	G
Soldering Temperature (follow standard Pb free soldering guidelines)	-	260	°C
Junction Temperature ^[15]	-	150	°C

Note:

15. Exceeding this temperature for extended period of time may damage the device.

Table 15. Thermal Consideration^[16]

Package	θJA, 4 Layer Board (°C/W)	θJA, 2 Layer Board (°C/W)
4 x 4 mm	TBD	TBD

Note:

16. Refer to JESD51 for 0JA and 0JC definitions, and reference layout used to determine the 0JA and 0JC values in the above table.

Table 16. Maximum Operating Junction Temperature^[17]

Max Operating Temperature (ambient)	Maximum Operating Junction Temperature		
125°C	150°C		

Note:

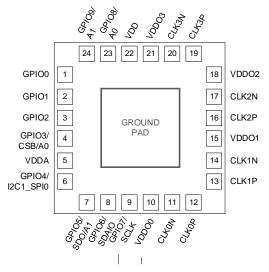
17. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.

Table 17. Environmental Compliance

Parameter	Test Conditions	
Mechanical Shock Resistance	MIL-STD-883F, Method 2002	
Mechanical Vibration Resistance	MIL-STD-883F, Method 2007	
Temperature Cycle	JESD22, Method A104	
Solderability	MIL-STD-883F, Method 2003	
Moisture Sensitivity Level	MSL3 @260°C	

contion

Package Pin-Out and Description (Preliminary)



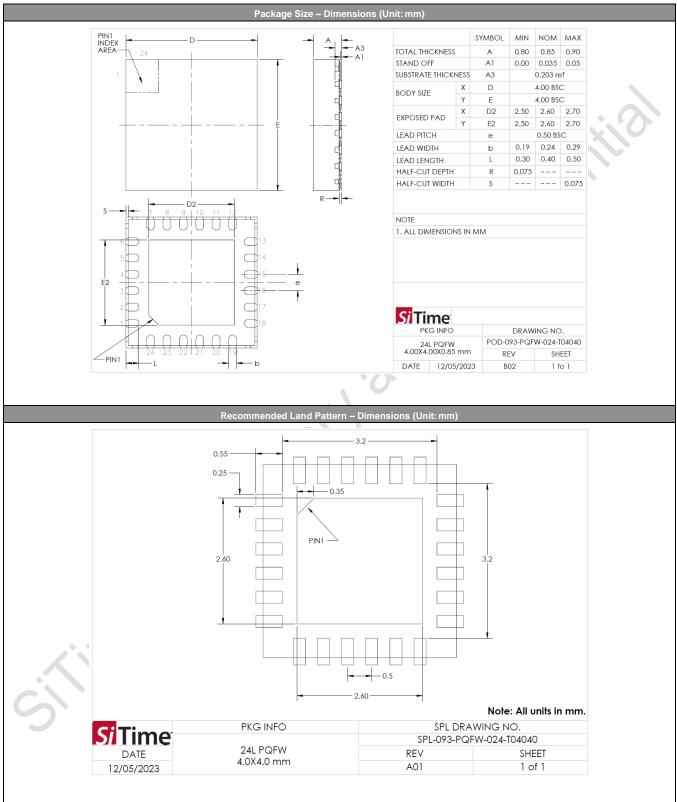

Figure 31. Top View

Table 18. Pin Description

Pin Name	I/O Type	Pin#	Pull-up (kΩ)	Pull-down (kΩ)	Function	Comments
GPIO0	I	1			Programmable Input	
GPIO1	I/O	2			Programmable Input / Output	
GPIO2	I/O	3			Programmable Input / Output	
GPIO3/CSB/A0	I/O	4			Programmable Input / Output / SPI Chip Select / I2C A0 Address bit	
VDDA	PWR	5			Analog Power Supply	
GPIO4/I2C1_SPI0	I/O	6			Programmable Input / Output / Select between SPI or I2C	
GPIO5/SDO/A1	I/O	7	•		Programmable Input / Output / SPI Data Output (SDO) / I2C A1 Address bit	
GPIO6/SDAIO	I/O	8			Programmable Input / Output / SPI Input Data (SDI) / I2C Data (SDA)	
GPIO7/SCLK	I/O	9	Ş		Programmable Input / Output / SPI / I2C Clock	
VDDO0	PWR	10			Supply Voltage for CLK0	
CLKON	0	11			Differential / LVCMOS Clock Output	
CLK0P	0	12			Differential / LVCMOS Clock Output	
CLK1P	0	13			Differential / LVCMOS Clock Output	
CLK1N	0	14			Differential / LVCMOS Clock Output	
VDDO1	PWR	15			Supply Voltage for CLK1	
CLK2P	0	16			Differential / LVCMOS Clock Output	
CLK2N	0	17			Differential / LVCMOS Clock Output	
VDDO2	PWR	18			Supply Voltage for CLK2	
CLK3P	0	19			Differential / LVCMOS Clock Output	
CLK3N	0	20			Differential / LVCMOS Clock Output	
VDDO3	PWR	21			Supply Voltage for CLK3	
VDD	PWR	22			Digital Power Supply	
GPIO8/A0	I/O	23			Programmable Input / Output / SPI Chip Select / I2C A0 Address bit	
GPIO9/A1	I/O	24			Programmable Input / Output / SPI Chip Select / I2C A1 Address bit	

Dimensions and Patterns

Additional Information

Table 19. Additional Information

 Tape & Reel dimension, reflow profile and other manufacturing related info RoHS report, reliability reports, composition reports Additional performance data such as phase noise, current consumption, and jitter for selected frequencies Termination design recommendations Layout recommendations Five-character designation used on the Commerce Control List (CCL) to identify dual use items for export control purposes. A Harmonized Tariff Schedule (HTS) code developed by the World Customs Organization to classify/define internationally traded goods. 	https://www.sitime.com/sites/default/files/gated/Manufacturing-Notes for-SiTime-Products.pdf http://www.sitime.com/support/quality-and-reliability http://www.sitime.com/support/application-notes http://www.sitime.com/support/application-notes
Additional performance data such as phase noise, current consumption, and jitter for selected frequencies Termination design recommendations Layout recommendations Five-character designation used on the Commerce Control List (CCL) to identify dual use items for export control purposes. A Harmonized Tariff Schedule (HTS) code developed by the World Customs Organization to classify/define	http://www.sitime.com/support/performance-measurement-report http://www.sitime.com/support/application-notes
current consumption, and jitter for selected frequencies Termination design recommendations Layout recommendations Five-character designation used on the Commerce Control List (CCL) to identify dual use items for export control purposes. A Harmonized Tariff Schedule (HTS) code developed by the World Customs Organization to classify/define	http://www.sitime.com/support/application-notes
Layout recommendations Five-character designation used on the Commerce Control List (CCL) to identify dual use items for export control purposes. A Harmonized Tariff Schedule (HTS) code developed by the World Customs Organization to classify/define	
Five-character designation used on the Commerce Control List (CCL) to identify dual use items for export control purposes. A Harmonized Tariff Schedule (HTS) code developed by the World Customs Organization to classify/define	http://www.sitime.com/support/application-notes
Control List (CCL) to identify dual use items for export control purposes. A Harmonized Tariff Schedule (HTS) code developed by the World Customs Organization to classify/define	Coulder
A Harmonized Tariff Schedule (HTS) code developed by the World Customs Organization to classify/define	Could
	Coult
Proprietand	
	Riopiletan

Revision History

Table 20. Revision History

	noion motory	
Version	Release Date	Change Summary
0.0	2-Jun-2022	Initial version
0.1	6-Jun-2022	Spec. updates and Pin out changes
0.2	7-Jul-2022	Additional updates on features, descriptions, etc.
0.21	25-Jul-2022	Added Ordering Information and TOC
0.25	4-Feb-2023	Updated Electrical Characteristics, Output Type Specifications and Test Conditions
0.26	15-Feb-2023	Functional Description, Monitoring and General-Purpose Inputs
0.27	3-Mar-2023	Updated Features, Electrical Characteristics, Additional Information, General Purpose Inputs
0.28	3-Mar-2023	Updated Ordering Information with Freq Stability code Organized Additional Information table links
0.31	10-Oct-2023	Updated Electrical Characteristics, Test Setup Diagrams, GPIO Table
0.32	20-Oct-2023	Updated GPIO Table
0.33	10-Nov-2023	GPIO inputs configurable active high and low
0.34	06-Dec-2023	Updated Package Drawings, GPIO tables, pin descriptions
0.35	19-Dec-2023	Updated Electrical Characteristics and Functional Description
	e e	zropiler
SiTime Corp	oration 5451 Pat	trick Henry Drive, Santa Clara, CA 95054, USA Phone: +1-408-328-4400 Fax: +1-408-328-440

SiTime Corporation, 5451 Patrick Henry Drive, Santa Clara, CA 95054, USA | Phone: +1-408-328-4400 | Fax: +1-408-328-4439

© SiTime Corporation 2022-2023. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. This product is not suitable or intended to be used in a life support application or component, to operate nuclear facilities, in military or aerospace applications, or in other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE THIS PRODUCT FOR ANY APPLICATION OR IN ANY COMPONENTS: USED IN LIFE SUPPORT DEVICES, TO OPERATE NUCLEAR FACILITIES, FOR MILITARY OR AEROSPACE USE, OR IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

For aerospace and defense applications, SiTime recommends using only Endura™ ruggedized products.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.