Chorus SiT91213

Low Phase Noise MEMS Clock Generator

Description

The Chorus SiT91213 is a low phase noise MEMS-based clock generator designed for low-power, low jitter applications. The device has a single clock domain and can drive up to 8 low-skew single-ended output loads or 4 low-skew differential loads.

The Chorus SiT91213 integrates an internal MEMS resonator as the frequency source for the internal PLL, eliminating the need for an external oscillator or resonator. The integrated MEMS improves system reliability by eliminating traditional clock generator's requirements for an external quartz and along with it, issues like activity dips due to shock and vibration and matching requirements.

The device is fully configurable in output frequency, clock output buffer type (differential and LVCMOS) and individual output enables, through the serial interface. Internal monitor flags and alarm conditions can be configured to be reported through GPIOs.

The device is compliant with PCle Generation 1-6.

User-defined, pre-programmed, and user-programmable NVM enables a high degree of flexibility and defined startup-configuration. Configurable GPIO pins support state changes such as individual output enable selection.

Features

- Standard Frequencies from 1 MHz to 700 MHz
- Fully integrated MEMS-based clock source
- Configurable clock domain and 4 differential outputs or 8 single-ended outputs
- Configurable output clock drivers:
 - LVDS, HCSL, LVPECL, LVCMOS
 - **Excellent frequency stability**
 - ±20 ppm (-40°C to 105°C)
 - o ±50 ppm (-40°C to 105°C)
- Configurable spread-spectrum clock generation
- Compliant with PCIe Generation 1 to 6
- Clock fault monitors (Lock Loss)
- Supply voltage of 1.8 V to 3.3 V
- Low phase jitter, 100 fs maximum (12 kHz-20 MHz)
- Resistant to shock/vibration
- Max. Operating range: -40°C to 105°C
- I²C or SPI serial interface for configuration
- QFN 24 pin 4 x 4 mm, 0.5 mm pitch (wettable flank) package

Applications

- Datacenter, Switches, Smart NIC
- Wireless 5G infrastructure equipment
- High Speed Links: Ethernet, Optical
- High Speed Interconnect: PCIe and SerDes

Block Diagram

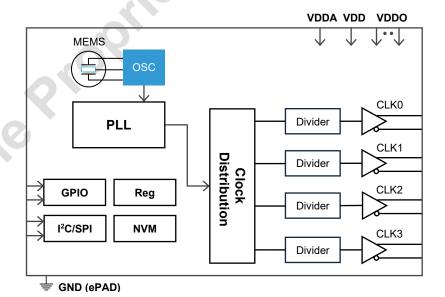


Figure 1. Chorus SiT91213 Block Diagram

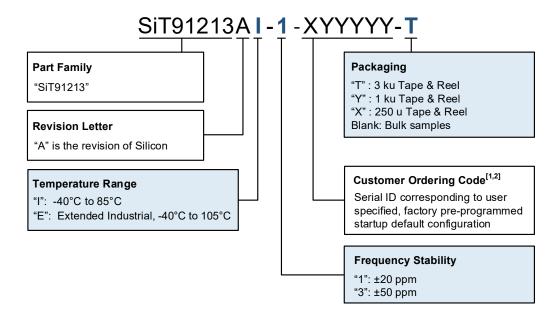


Table of Contents

Description	1
Features	1
Applications	1
Block Diagram	1
Ordering Information	3
Functional DescriptionError! Bookmark n	ot defined.
Chip Status MonitoringError! Bookmark n	ot defined.
General Purpose InputsError! Bookmark n	ot defined.
Electrical Characteristics	6
FlexSwing Configurations	13
Test Circuit Diagrams	15
Test Setups for LVPECL Measurements	15
Test Setups for FlexSwing Measurements ^[10]	16
Test Setups for LVDS Measurements	17
Test Setups for HCSL Measurements	
Test Setups for Low-Power HCSL Measurements	
Naveform Diagrams	20
Termination Diagrams	22
LVPECL and FlexSwing Termination	
LVDS, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V	
HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V	
Low-power HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V	23
Operating Temperature and Thermal Characteristics	24
Package Pin-Out and Description (Preliminary)	26
Dimensions and Patterns	28
Additional Information	29
Revision History	30

Ordering Information

Notes:

- 1. X = "A" and "B" customer device, "C to "Z" reserved.
 - A: Denotes blank devices;
 - B: Denotes Pre-configured devices, contact SiTime for the specifics.
- 2. Y = 0..9, A...Z for custom serial ID.

Functional Description

The Chorus SiT91213 is a commercial grade, low-jitter clock generator with an integrated SiTime MEMS resonator targeting applications in the Communications, Enterprise and Industrial segments. The Chorus SiT91213 can provide 4 configurable differential or 8 single-ended low skew outputs, or a combination of both. Differential outputs can be configured up to a maximum clock frequency of 700 MHz, while single ended outputs can be configured up to a maximum clock frequency of 220 MHz. The integrated MEMS resonator enables the Chorus SiT91213 to be operated without an external quartz crystal or oscillator reference, thereby eliminating the need for associated matching requirements.

The output drivers support commonly used signal formats, such as LVPECL, LVDS, HCSL, LVCMOS, as well as FlexSwing. Individual VDDO pins capable of accepting between 1.8 V and 3.3 V are available for each differential output driver, The core voltage supply (VDD, VDDA) accepts 3.3 V, 2.5 V, or 1.8 V and is independent from the output supplies (VDDO).

The SiT91213 combines SiTime's highly reliable MEMS resonator with a wideband PLL, on-chip temperature compensation, and four integer dividers to generate high-performance outputs with typical jitter of 70 fs and frequency stability of ±20 ppm or ±50 ppm across the wide temperature range, -40°C to 105°C. The Chorus SiT91213's on-chip regulators ensure extremely good power supply noise rejection, ensuring minimal deviation from the jitter specification due to power supply noise.

The elimination of an external reference clock source leads to improved ease of use by eliminating the need for any matching or frequency jump issues. Importantly for mission critical applications, all dependence on quartz crystals (which have been shown to be prone to high failure rates) is eliminated. In addition to improved failure rates, internal functions such as the MEMS reference clock, bandgap reference, PLL, and VDDIOs, and output drivers are monitored. This is a significant improvement over common on-chip status monitors in clock generator chips. Fault conditions on these monitored functions can be configured

to be sent out to GPIO outputs individually or as a combined alarm signal or read via I²C or SPI interface. This allows an external MCU to be alerted to a fault condition in the clock generator to take appropriate action consistent with system requirements.

The Chorus SiT91213 is available optionally with or without a serial interface (I²C or SPI). The serial interface can be used to read internal registers, including status of the internal monitoring functions. A user can use In-System Configuration (ISC) mode to write to contents of internal registers to modify the device configuration via the serial interface. In such a use case, the modified configuration will be lost at the next power cycle. The Chorus SiT91213 allows the user to burn the new configuration into the NVM via the In-System Programming (ISP) Mode, which will then be the new default configuration at the next power cycle.

Optionally, the user can store up to four different static clock configurations in the Chorus SiT91213 NVM, one of which is selectable at power-up based on the status sampled on the two Frequency Select pins. The four static configurations cannot be modified using ISP mode, but ISC mode can still be used to modify internal register contents.

For applications which require only a standard configuration, the Chorus SiT91213 is also available as a factory configured device without a serial interface, which allows the use of the serial interface pins as additional GPIOs. SiTime will program the NVM to configure the devices according to specific customer requirements.

The SiT91213 also supports Digitally Controlled Oscillator (DCO) Mode in which the user can modulate the output frequencies via serial interface (I2C/SPI). The user can control two registers which modulate the internal Voltage Controlled Oscillator (VCO) in the PLL. All enabled outputs will change simultaneously in response to the VCO update. The VCO tuning range is +/- 800ppm with an increment or decrement step size of 0.023 ppt. This can be achieved by writing to a 36-bit DCO tuning register. A second 20-bit register allows the user to limit or clip the tuning range to less than +/- 800ppm. The clipped tuning range can be set with a step size of 0.753 ppb.

Chip Status Monitoring

The SiT91213 monitors multiple internal parameters and makes these status monitoring functions available to an external MCU via GPIO pins or through direct access of internal registers via I²C/SPI. All the status signals. listed in the table below, are also accessible via register reads over the serial interface (I²C or SPI).

Table 1. Status Monitoring Signals

Monitoring Function	Monitored on GPIO Pin (Parts without I ² C/SPI)	Monitored on GPIO Pin (Parts with I ² C/SPI)	Function						
MEMS Clock Monitor	Pin 2 / 3 / 4 / 6 / 7 / 23 / 24	Pin 2 / 3 / 23 / 24	Goes low when internal MEMS clock does not oscillate						
Bandgap Monitor	Pin 2 / 3 / 4 / 6 / 7 / 23 / 24	Pin 2 / 3 / 23 / 24	Goes low when internal band gap reference falls below threshold						
PLL Lock Monitor	Pin 2 / 3 / 4 / 6 / 7 / 23 / 24	Pin 2 / 3 / 23 / 24	Goes low when PLL loses lock with MEMS reference clock						
Clock0 Ready	Pin 2	Pin 2	Goes low when Clock0 driver is not toggling / has a fault						
Clock1 Ready	Pin 3	Pin 3	Goes low when Clock1 driver is not toggling / has a fault						
Clock2 Ready	Pin 23	Pin 23	Goes low when Clock2 driver is not toggling / has a fault						
Clock3 Ready	Pin 24	Pin 24	Goes low when Clock3 driver is not toggling / has a fault						
Clock01 Ready	Pin 6	-	Goes low when Clock0 or Clock1 driver are not toggling / have a far						
Clock23 Ready	Pin 7	-	Goes low when Clock2 or Clock3 driver are not toggling / have a fault						
VDDO0 Good	Pin 2	Pin 2	Goes low when VDDO0 supply is below NVM-configured threshold						
VDDO1 Good	Pin 3	Pin 3	Goes low when VDDO1 supply is below NVM-configured threshold						
VDDO2 Good	Pin 23	Pin 23	Goes low when VDDO2 supply is below NVM-configured threshold						
VDDO3 Good	Pin 24	Pin 24	Goes low when VDDO3 supply is below NVM-configured threshold						
All Clocks Ready	Pin 2 / 3 / 4 / 6 / 7 / 23 / 24	Pin 2 / 3 / 23 / 24	Goes low when any enabled clock output is not toggling / has a fault						
Alarm_B	Pin 2 / 3 / 4 / 6 / 7 / 23 / 24	Pin 2 / 3 / 23 / 24	Goes low when any fault is triggered						
ISP_Burn_Success	Pin 4	(Access via register read)	Asserted when in-system NVM burn is successful						
VDDO01 Good	VDD001 Good Pin 6		Asserted when VDDO0 and VDDO1 are above user configured thresholds						
VDDO23 Good	Pin 7	-	Asserted when VDDO2 and VDDO3 are above user configured thresholds						
Die Temperature Out of Range	Accessible via reg	jister reads only	Asserted if die temperature is outside user-configured range. Available via direct register access through I ² C/SPI						

General Purpose Inputs

Table 2. User Configurable Input Signals^[3]

Input Function	Mapped on GPIO Pin (Parts w/o I ² C/SPI)	Mapped on GPIO Pin (Parts with I ² C)	Mapped on GPIO Pin (Parts with SPI)	Function						
SSEN / SSEN	Pin 1 / 3 / 4 / 8	Pin 1 / 3 / 4	Pin 1 / 3	Spread Spectrum enabled on all outputs (configurable active high or low)						
OE0 / OE0	Pin 2 / 3	Pin 2 / 3	Pin 2 / 3	Enable Output 0 (configurable active high or low)						
OE1 / OE1	Pin 2 / 3	Pin 2 / 3	Pin 2 / 3	Enable Output 1 (configurable active high or low)						
OE2 / OE2	Pin 1 / 6 / 7	Pin 1 / 6 / 7	Pin 1 / 6	Enable Output 2 (configurable active high or low)						
OE3 / OE3	Pin 1 / 6 / 7	Pin 1 / 6 / 7	Pin 1 / 6	Enable Output 3 (configurable active high or low)						
OE_all / OE_all	Pin 2 / 7	Pin 2 / 7	Pin 2	Enable all Outputs (configurable active high or low)						
FS0	Pin 9 / 23 Pin 23		Pin 23	Frequency Select 0						
FS1	Pin 8 / 24	Pin 24	Pin 24	Frequency Select 1						

Note:

3. The I²C and SPI pins can be reconfigured, in factory, as GPIO pins. Such parts (without the I²C or SPI interface) can be ordered directly only from SiTime.

Power Supply Sequencing

The core power supplies (VDDA and VDD) are required to be at the same voltage. VDDOx can be chosen independently as required by the clock receiver. All VDDOx can be sequenced independently of each other and VDD/VDDA. However, VDD and VDDA should be brought up together.

Electrical Characteristics

All Min and Max limits in the Electrical Characteristics tables are specified over operating temperature and rated operating voltage with standard output termination shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage. See Test Circuit Diagrams for the test setups used with each signaling type.

Table 3. Electrical Characteristics - Common to All Output Signaling Types

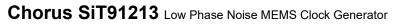

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition					
				Frequency Ra	ange						
0.1.15	f			700	MHz	Differential clock outputs					
Output Frequency Range	f			220	MHz	Single-ended (LVCMOS) clock outputs					
				Frequency Sta	ability						
		-	-	±20	ppm	Inclusive of initial tolerance, operating temperature -40°C to					
Frequency Stability	F_stab	_	_	±50	ppm	105°C, rated power supply voltage, load variation of 2 pF ± 10 and 10 years aging at 85°C					
				Temperature F	Sange	and 10 years aging at 65 C					
		-40	_	+85	°C	Industrial, ambient temperature					
Operating Temperature Range	T_use	-40	_	+105	°C	Extended industrial, ambient temperature					
	l l	10	I	Supply Volta		Extended industrial, difficient temporature					
		1.71	1.80	1.89	V	Voltage-supply order code "18". Contact SiTime for 1.5 V					
Supply Voltage	-	2.25	2.50	2.75	V	Voltage-supply order code "25"					
cupply relage	-	2.97	3.30	3.63	V	Voltage-supply order code "33"					
	l l	2.01	0.00	Core Curre		Tonago cappiy craci codo co					
Core Current	ldd	-	_	55	mA	Total current consumed on the VDD and VDDA power domains					
COLO GUITOIN	iuu		I	Input Characte	l .	Total current consumed on the VBB and VBB/(power demand					
Input Voltage High	VIH	70%	_	_	Vdd	Logic High function for all input pins					
Input Voltage Low	VIL	_	_	30%	Vdd	Logic High function for all input pins					
put roimge zon				Output Charact	l .	20g.c r ng. r tancaser for an inpact pinto					
Duty Cycle	DC	45	_	55	%	See Figure 13 for waveform					
			Sta	artup, OE and S							
Startup Time	T start	_	1.2	2	ms	Measured from the time Vdd reaches its rated minimum value					
Output Enable Time	T_oe	-	-	600+1 clock cycles	ns	For all signaling types. Measured from the time OE pin toggles to enable logic level to the time clock pins reach 90% of final swing. See Figure 19 for waveform					
Output Disable Time	T_od	-	-	600+1 clock cycles	ns	Measured from the time OE pin toggles to disable logic level to the last clock edge. See Figure 20 for waveform					
		Jitter	and Phas	e Noise, meası	ured at f =	= 156.25 MHz					
RMS Phase Jitter ("4-16A")	T_phj	-	55	-	fs	"4-16A" 4 MHz to 16 MHz offset frequency integration bandwidth with aliasing					
RMS Phase Jitter (random)	T_phj	_	70	100	fs	12 kHz to 20 MHz offset frequency integration bandwidth.					
Spurious Phase Noise	T_spn	_	-	-95	dBc	12 kHz to 20 MHz offset frequency range					
RMS Period Jitter ^[4]	T_jitt_per	-	0.5	0.6	ps	Measured based on 10K cycle					
Peak Cycle-to-cycle Jitter ^[4]	T_jitt_cc	_	3.5	6.2	ps	Measured based on 1K cycle					
			Syn	chronization ar	nd Timing						
Output Skew	t _{SK,B}			150	ps						
			DC	O Mode Charac	teristics						
Frequency Tuning Range	F _{RNG_DCO}	-800		+800	ppm	Tuning via I2C or SPI					
Frequency Step Resolution	F _{RES_DCO}		0.023		ppt	Increment/decrement 36-bit register					
Frequency Tuning Clipping Resolution	F _{CLP_DCO}		0.763		ppb						

Table 4. Electrical Characteristics – LVPECL | See Figure 2 and Figure 3 for test setups. Current consumption only accounts for VDDO and output driver stage.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
		Curre	ent Consun	nption, f = 1	156.25 MH	Ⅎz
Current Consumption, Output Enabled without Termination	Idd_oe_nt	-	_	25	mA	Excluding load termination current
Current Consumption, Output Disabled without Termination	ldd_od_nt	-	ı	13	mA	Excluding load termination current
Current Consumption, Output	14444	-	-	38	mA	Including load termination current as shown in Figure 24 for Vdd=3.3 V ±10% and R3=220 Ohms
Enabled with Termination 1	Idd_oe_wt1	-	-	36	mA	Including load termination current as shown in Figure 24 for Vdd=2.5 V ±10% and R3=220 Ohms
Current Consumption Output	ldd od ut1	-	ı	26	mA	Including load termination current as shown in Figure 24 for Vdd=3.3 V ±10%and R3=220 Ohms. Driver output is held at last clock output levels.
Disabled with Termination 1	ldd_od_wt1	-	ı	24	mA	Including load termination current as shown in Figure 24 for Vdd=2.5 V ±10% and R3=220 Ohms. Driver output is held at last clock output levels.
Current Consumption, Output Enabled with Termination 2	Idd_oe_wt2	-	-	53	mA	Including load termination current. See Figure 25 for termination
Current Consumption, Output Disabled with Termination 2	Idd_od_wt2	-	ı	41	mA	Including load termination current. See Figure 25 for termination. Driver output is held at last clock output levels.
			Output	Characteri	stics	
Output High Voltage	VOH	Vdd-1.075	Vdd-0.95	Vdd-0.86	V	See Figure 12 for waveform
Output Low Voltage	VOL	Vdd-1.84	Vdd-1.7	Vdd-1.62	V	See Figure 12 for waveform
Output Differential Voltage Swing	V_Swing	1.4	_	1.8	V	See Figure 13 for waveform
Rise/Fall Time	Tr, Tf	-	210	300	ps	20% to 80%. See Figure 13 for waveform
Differential Asymmetry, peak-peak	V_da	-	-	85	mV	See Figure 15 for waveform
Differential Skew, peak	V_ds	-	-	±25	ps	See Figure 16 for waveform
Overshoot Voltage, peak	V_ov	-	-	12	%	Measured as percent of V_Swing. See Figure 17 for waveform
		Powe	r Supply N	oise Immur	nity (VDD	0)
Paris Oranda Indiana di Iitta		_	_	10	fs/mV	Power supply ripple from 10 kHz to 20 MHz
Power Supply-Induced Jitter Sensitivity	PSJS	-	-	8	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 2
Power Supply Induced Phase		-	_	-85	dBc	50 mV peak-peak ripple on VDD
Power Supply-Induced Phase Noise	PSPN	-	-	-90	dBc	50 mV peak-peak ripple on VDD. Using RC power supply filter as shown in Figure 2

Table 5. Electrical Characteristics – FlexSwing | See Figure 4 and Figure 5 for test setups. Current consumption only accounts for VDDO and output driver stage.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
			Currer	nt Consump	otion	
Current Consumption, Output Enabled without Termination	Idd_oe_nt	-	-	25	mA	Excluding load termination current
Current Consumption, Output Disabled without Termination	Idd_od_nt	-	ı	13	mA	Excluding load termination current
Current Consumption, Output	Idd oe wt	-	ı	35	mA	Including load termination current, for FlexSwing order code "ER". See Figure 24 for Vdd=3.3 V ±10% and R3=220 Ohms
Enabled with Termination	idd_0e_wt	-	-	35	mA	Including load termination current, for FlexSwing order code "ER". See Figure 24 for Vdd=2.5 V ±10%, and R3=220 Ohms
Current Consumption Output		-	-	23	mA	Including load termination current, for FlexSwing order code "ER". See Figure 24 for Vdd=3.3 V ±10% and R3=220 Ohms. Driver output is held at last clock output levels.
Disabled with Termination	Idd_od_wt	-	code "ER". See Fi			Including load termination current, for FlexSwing order code "ER". See Figure 24 for Vdd=2.5 V ±10%, and R3=220 Ohms. Driver output is held at last clock output levels.
	•		Output	Characteri	stics	
Output High Voltage	VOH	VHn -0.13	VHn	VHn +0.1	V	See Figure 12 for waveform; Refer to Table 10 or Table 11 order codes for nominal VOH (i.e. VHn) values
Output Low Voltage	VOL	VLn -0.13	VLn	VLn +0.12	V	See Figure 12 for waveform; Refer to Table 10 or Table 11 order codes for nominal VOL (i.e. VLn) values
Output Differential Voltage Swing	V_Swing	-0.2	2*(VHn- VLn)	+0.2	V	See Figure 13 for waveform
Rise/Fall Time	Tr, Tf	-	250	300	ps	20% to 80%. See Figure 13 for waveform
Differential Asymmetry, peak-peak	V_da	-	ı	100	mV	See Figure 15 for waveform
Differential Skew, peak	V_ds	-	-	±25	ps	See Figure 16 for waveform
Overshoot Voltage, peak	V_ov	_	-	12	%	Measured as percent of V_Swing. See Figure 17 for waveform
		Pow	er Supply	Noise Imm	unity (VD	DO)
Device Comply Indicated Little		-	-	10	fs/mV	Power supply ripple from 10 kHz to 20 MHz. For FlexSwing order code "ER"
Power Supply-Induced Jitter Sensitivity	PSJS	-	-	8	fs/mV	Power supply ripple from 10 kHz to 20 MHz. For FlexSwing order code "ER". Using RC power supply filter as shown in Figure 4
Power Supply-Induced Phase	DCDN	-	-	-85	dBc	50 mV peak-peak ripple on VDD. For FlexSwing order code "ER"
Noise	PSPN	-	-	-90	dBc	50 mV peak-peak ripple on VDD. For FlexSwing order code "ER". Using R C power supply filter as shown in Figure 4

Table 6. Electrical Characteristics – LVDS | See Figure 6 and Figure 7 for test setups. Current consumption only accounts for VDDO and output driver stage.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
			Curren	t Consump	tion	
Current Consumption, Output Enabled without Termination	Idd_oe_nt	-		25	mA	Excluding load termination current
Current Consumption, Output Disabled without Termination	Idd_od_nt	-		13	mA	Excluding load termination current
Current Consumption, Output Enabled with Termination	ldd_oe_wt	-		29	mA	Including load termination current. See Figure 28 for termination
Current Consumption Output Disabled with Termination	ldd_od_wt	-		17	mA	Including load termination current. See Figure 28 for termination. Driver output is held at last clock output levels.
			Output	Characteris	stics	
Differential Output Voltage	VOD	250	360	450	mV	See Figure 14 for waveform
Delta VOD	ΔVOD	1	-	50	mV	See Figure 14 for waveform
		1.125	1.25	1.375		See Figure 14 for waveform
		1.0		1.05		See Figure 14 for waveform VDDO = 1.8V
Delta VOS	ΔVOS	_	ı	50	mV	See Figure 14 for waveform
Rise/Fall Time	Tr, Tf	-	220	300	ps	Measured 20% to 80% using Figure 28 for termination. See Figure 13 for waveform
Differential Asymmetry, peak-peak	V_da	-	-	50	mV	See Figure 15 for waveform
Differential Skew, peak	V_ds	_	_	±25	ps	See Figure 16 for waveform
Overshoot Voltage, peak	V_ov	-	ı	10	%	Measured as percent of VOD. See Figure 18 for waveform
		Powe	er Supply N	loise Immu	nity (VDD	00)
Power Supply-Induced Jitter	PSJS	-	-	10	fs/mV	Power supply ripple from 10 kHz to 20 MHz
Sensitivity	PSJS	-	-	8	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 6
Power Supply-Induced Phase	PSPN	-	ı	-85	dBc	50 mV peak-peak ripple on VDD
Noise	PSPN –			-90	dBc	50 mV peak-peak ripple on VDD. Using RC power supply filter as shown in Figure 6

Table 7. Electrical Characteristics – HCSL | See Figure 8 and Figure 9 for test setups. Current consumption only accounts for VDDO and output driver stage.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
			Currer	nt Consum	ption	
Current Consumption, Output Enabled without Termination	Idd_oe_nt	_	ı	25	mA	Excluding load termination current
Current Consumption, Output Disabled without Termination	ldd_od_nt	1	1	13	mA	Excluding load termination current
			Output	Characteri	stics	
Output High Voltage	VOH	0.60	0.7	0.95	V	See Figure 12 for waveform
Output Low Voltage	VOL	-0.1	0	0.1	V	See Figure 12 for waveform
Output Differential Voltage Swing	V_Swing	1.1	1.4	1.6	V	See Figure 13 for waveform
Rise/Fall Time	Tr, Tf	-	250	300	ps	Measured 20% to 80%. See Figure 13 for waveform
Differential Asymmetry, peak-peak	V_da	1	_	65	mV	See Figure 15 for waveform
Differential Skew, peak	V_ds	_	ı	±25	ps	See Figure 16 for waveform
Overshoot Voltage, peak	V_ov	ı	ı	10	%	Measured as percent of V_Swing. See Figure 17 for waveform
		Pow	er Supply N	loise Immu	ınity (VDE	00)
Power Supply-Induced Jitter		_	ı	10	fs/mV	Power supply ripple from 10 kHz to 20 MHz
Sensitivity	PSJS	-	-	8	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 8
Dower Supply Induced Phase		_	-	-85	dBc	50 mV peak-peak ripple on VDD
Power Supply-Induced Phase Noise	PSPN	_	-	-90	dBc	50 mV peak-peak ripple on VDD. Using RC power supply filter as shown in Figure 8

Table 8. Electrical Characteristics – Low-Power HCSL | See Figure 10 and Figure 11 for test setups. Current consumption only accounts for VDDO and output driver stage.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
			Currer	nt Consum	otion	
Current Consumption, Output Enabled without Termination	ldd_oe_nt	-	1	25	mA	Excluding load termination current
Current Consumption, Output Disabled without Termination	ldd_od_nt	-	1	13	mA	Excluding load termination current
			Output	Character	istics	
Output High Voltage	VOH	-	ı	1.1	V	See Figure 12 for waveform
Output Low Voltage	VOL	-0.1	0	0.1	V	See Figure 12 for waveform
Output Differential Voltage Swing	V_Swing	1.4	1.83	2.0	V	See Figure 13 for waveform
Rise/Fall Time	Tr, Tf –		250	300	ps	Measured 20% to 80%. See Figure 13 for waveform
Differential Asymmetry, peak-peak	V_da	-	ı	85	mV	See Figure 15 for waveform
Differential Skew, peak	V_ds	-	ı	±30	ps	See Figure 16 for waveform
Overshoot Voltage, peak	V_ov	-	ı	10	%	Measured as percent of V_Swing. See Figure 17 for waveform
		Pow	er Supply I	Noise Immi	ınity (VD	DO)
Barrer Ormalia la direct di litteri		-	1	10	fs/mV	Power supply ripple from 10 kHz to 20 MHz
Power Supply-Induced Jitter Sensitivity	PSJS	-	1	8	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 10
Barrer Commission and Black		-	ı	-85	dBc	50 mV peak-peak ripple on VDD
Power Supply-Induced Phase Noise	PSPN	-	ı	-90	dBc	50 mV peak-peak ripple on VDD. Using RC power supply filter as shown in Figure 10

Table 9. Electrical Characteristics – Low-Voltage CMOS | Current consumption only accounts for VDDO and output driver stage.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
			Currer	nt Consump	otion	
Current Consumption, Output Enabled	ldd_oe	1	1	14	mA	
Current Consumption, Output Disabled	ldd_od	1	-	12	mA	
		Outpu	t Charactei	ristics (Star	dard LVC	CMOS)
Output High Voltage	VOH	90%	ı	-	VDDO	IOH = -4 mA, VDDO = 3.3 V
Output Low Voltage	VOL	1	ı	10%	VDDO	IOL = 4 mA, VDDO = 3.3 V
Rise/Fall Time	Tr, Tf	-	ı	5	ns	Measured 20% to 80%, output frequency 20 MHz, load = 8 pF. SiT91213 has programmable options for rise-time & fall-time
Duty Cycle		45	ı	55	%	Measured in percentage of clock period
Overshoot Voltage, peak	V_ov	-	ı	10	%	Measured as percent of difference between VOH and VOL
		Output C	Characteris	tics (Regula	ated LVC	MOS)
Output High Voltage Regulated Range	VDDOreg	0.9	-	VDDO-0.3	٧	Regulated VOH can be programmed with up to 20 steps
Output High Voltage Regulated Range	VOH	90%	_	_	VDDOreg	IOH = -4 mA, VDDO = 3.3 V
Output Low Voltage	VOL	-	_	10%	VDDreg	IOL = 4 mA, VDDO = 3.3 V
Rise/Fall Time	Tr, Tf	ı	0.4	0.6	ns	Measured 20% to 80%, output frequency 20 MHz, load = 8 pF. SiT91283 has programmable options for rise-time & fall-time
Overshoot Voltage, peak	V_ov	-	_	10	%	Measured as percent of difference between VOH and VOL
		Pow	er Supply	Noise Immu	ınity (VDI	DO)
Power Supply-Induced Jitter Sensitivity	PSJS	_		20	fs/mV	Power supply ripple from 10 kHz to 20 MHz
Power Supply-Induced Phase Noise	PSPN	_	-	-70	dBc	50 mV peak-peak ripple on VDD

FlexSwing Configurations

A FlexSwing output-driver performs like LVPECL and additionally provides independent control of voltage swing and DC offset voltage levels. This simplifies interfacing with chipsets having non-standard input voltage requirements

and can eliminate all external source-bias resistors. FlexSwing supports power supply voltages from 1.71 V to 3.63 V, and the programmable VOH and VOL levels may be referenced to the voltage on either VDD or GND pins.

Table 10^[6]. FlexSwing 2-digit Order Codes specifying VHn and VLn referenced to voltage on VDD pin

													٧	'Ln										
			Α	В	С	D	E	F	G	Н	J	К	L	М	N	P	Q	R	S	Т	U	V	W	х
		order Code '_Swing (V)	Vdd-2.31V	Vdd-2.26V	Vdd-2.21V	Vdd-2.16V	Vdd-2.11V	Vdd-2.06V	Vdd-2.01V	Vdd-1.96V	Vdd-1.91V	Vdd-1.86V	Vdd-1.82V	Vdd-1.77V	Vdd-1.72V	Vdd-1.67V	Vdd-1.62V	Vdd-1.57V	Vdd-1.52V Vdd-1.47V Vdd-1.37V		Vdd-1.32V	vdd-1.28V		
			>	Š	Š	Š	>	Š	Š	Š	-	-	-	-	-	-	-	-	-	-	-	-	-	_
	Α										AJ 1.94	AK 1.86	AL 1.77	AM 1.69	AN 1.61	AP 1.52	AQ 1.44	AR 1.35	AS 1.27	AT 1.18	AU 1.10	AV 1.01	AW 0.93	AX 0.85
	В										BJ	ВК	BL	BM	BN	ВР	BQ	BR	BS	BT	BU	BV	BW	ВХ
	_									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	С								4.04	4.00	CJ	CK	CL	CM	CN	CP	cq	CR	CS	CT	CU	CV	CW	СХ
	-								1.94	1.86	1.77 DJ	1.69 DK	1.61 DL	1.52 DM	1.44 DN	1.35 DP	1.27 DQ	1.18 DR	1.10 DS	1.01 DT	0.93 DU	0.85 DV	0.76 DW	0.68 DX
	D							1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59
	Е										EJ	EK	EL	EM	EN	EP	EQ	ER	ES	ET	EU	EV	EW	EX
							1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.014	0.93	0.85	0.76	0.68	0.59	0.51
	F										FJ	FK	FL	FM	FN	FP	FQ	FR	FS	FT	FU	FV	FW	
						1.94	1.86	1.77	1.69	1.61 GH	1.52 GJ	1.44 GK	1.35 GL	1.27 GM	1.18 GN	1.10 GP	1.01	0.93 GR	0.85 GS	0.76 GT	0.676 GU	0.59 GV	0.51	0.42
	G				1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	GQ 0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34
	<u>.</u>				1.54	1.00	1.77	1.03	HG	HH	HJ	HK	HL	HM	HN	HP	HQ	HR	HS	HT	HU	0.31	0.42	0.54
	Н			1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25
	J							JF	JG	JH	II	JK	JL	JM	JN	JP	JQ	JR	JS	JT				
	_		1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25	
	к	8/2	4.00	4	4.60	4.64	KE	KF	KG	KH	KJ	KK	KL	KM	KN	KP	KQ	KR	KS	0.43	0.24	0.35		
		VLn + V_Swing /	1.86	1.77	1.69	1.61 LD	1.52 LE	1.44 LF	1.35 LG	1.27 LH	1.18 U	1.10 LK	1.01 LL	0.93 LM	0.85 LN	0.76 LP	0.68 LQ	0.59 LR	0.51	0.42	0.34	0.25		
VHn	L	ر ا ا	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25			
		+			MC	MD	ME	MF	MG	МН	MJ	MK	ML	MM	MN	MP	MQ							
	М	₹	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25				
	N			NB	NC	ND	NE	NF	NG	NH	NJ	NK	NL	NM	NN	NP								
			1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25					
	Р		PA 1.52	PB 1.44	PC 1.35	PD 1.27	PE 1.18	PF 1.10	PG 1.01	PH 0.93	PJ 0.85	PK 0.76	PL 0.68	PM 0.59	PN 0.51	0.42	0.34	0.25						
	Ļ		QA	QB	QC	QD	QE	QF	QG	QH	QJ	QK	QL	QM	0.31	0.72	0.54	-0.25						
	Q		1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25							
	R		RA	RB	RC	RD	RE	RF	RG	RH	RJ	RK	RL						Suppl	y Voltag	e Ava	ilable C	olors	
			1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25			1.8	3V±5%	No	t Suppo	rted	
	s		SA 1.27	SB 1.18	SC 1.10	SD 1.01	SE 0.93	SF 0.85	SG 0.76	SH 0.68	SJ 0.59	SK 0.51	0.42	0.34	0.25				1.71V	to 3.63	V No	t Suppo	rted	
	H		TA	1.18 TB	TC	TD	TE	U.85	TG	TH	0.59 TJ	0.51	0.42	0.34	0.23					V±10%		Blue		
	Т		1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25	l					V±10%	Blu		Red	
	υ		UA	UB	UC	UD	UE	UF	UG	UH									_	to 3.63	V	Blue		
	Ů		1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25						N	lote 4		Gray		
	v		VA	VB	VC	VD	VE	VF	VG				l											
	L		1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25												
	w		WA 0.93	WB 0.85	WC 0.76	WD 0.68	WE 0.59	WF 0.51	0.42	0.34	0.25													
	_	ļ.	0.53	0.05	0.70	0.00	0.33	0.31	0.42	0.34	0.23													

Note:

- 4. Please contact SiTime.
- 5. Table based on Y-Bias Termination with R3 = 220. See Figure 24.

The above table identifies supported combinations of nominal VOH (i.e. VHn) and nominal VOL (i.e. VLn) in colored boxes. The two-character code in each box corresponds to the VHn and VLn codes specified in the 2nd column and 2nd row in the table, respectively. The number in each box indicates the nominal differential swing (i.e. VHn – VLn).

For example, order code "FS" selects VHn code "F" (i.e. Vdd-1.144 V) and VLn code "S" (i.e. Vdd-1.530 V) corresponding to a V_Swing of 0.845 V peak-peak, which may be used for supply voltages of 2.5 V $\pm 10\%$, 3.3 V $\pm 10\%$ or (2.25 V to 3.63 V). Alternatively, an order code of "GS" corresponds to a VHn code "G" (i.e. Vdd-1.193 V) and a VLn order code "S" (e.g. Vdd-1.530 V) corresponding to a V_Swing of 0.760 V peak-peak, which may be used for a supply voltage of 3.3 V $\pm 10\%$.

Table 11. FlexSwing 2-digit Order Codes specifying VHn and VLn referenced to voltage on GND pin

						-							۱.,			_		-		.,	141	V	
	der C			D >	E >	F >	G >	H >))	K >	L >	M >	N >	P >	Q >	R >	S >	T >	U	V >	W >	X >	Y
v_:	Swing	; (V)	0.45V	0.49V	0.54V	0.59V	0.64V	0.69	0.74V	V67.0	0.84V	0.89V	0.94V	0.99V	1.03V	1.08V	1.16V	1.23V	1.3V	1.38V	1.45V	1.53V	1.6V
	А																			AV 1.94	AW 1.86	AX 1.69	AY 1.61
	Н			Supp	ly Volta	ge		Availa	ble Col	ors										BV	BW	BX	BY
	В				8V±5%)range			een										1.86	1.77	1.61	1.52
	С			1.71\	/ to 3.6	3V		(Green	en									CU	CV	CW	CX	CY
	=			2.5	5V±10%	C	Orange	Gree	n B	lue	Purple							DT	1.94 DU	1.77 DV	1.69 DW	1.52 DX	1.44 DY
	D				3V±10%		Gre		Blue Red									1.94	1.86	1.69	1.61	1.44	1.35
	Е				/ to 3.6	3V	Gre			Blue	9							ET	EU	EV	EW	EX	EY
	Ā			N	lote 7				Gray								50	1.86	1.77	1.61	1.52	1.35	1.27
	F																FS 1.94	FT 1.77	FU 1.69	FV 1.52	FW 1.44	FX 1.27	FY 1.18
	G																GS	GT	GU	GV	GW	GX	GY
	u															1.94	1.86	1.69	1.61	1.44	1.35	1.18	1.10
	н														1.94	1.00	HS	HT	HU 1.52	HV	HW	HX	HY
	\vdash														1.94	1.86	1.77 JS	1.61 JT	1.52 JU	1.35 JV	1.27 JW	1.10 JX	1.01 JY
	J													1.94	1.86	1.77	1.69	1.52	1.44	1.27	1.18	1.01	0.93
	к																KS	KT	KU	KV	KW	КХ	KY
													1.94	1.86	1.77	1.69	1.61	1.44	1.35	1.18	1.10	0.93	0.85
	L											1.94	1.86	1.77	1.69	1.61	LS 1.52	LT 1.35	LU 1.27	LV 1.10	LW 1.01	LX 0.85	LY 0.76
																MR	MS	MT	MU	MV	MW	MX	MY
	М										1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.27	1.18	1.01	0.93	0.76	0.68
	N	8/2								1.94	1.86	1.77	1.69	1.61	NQ 1.52	NR 1.44	NS 1.35	NT 1.18	NU 1.10	NV 0.93	NW 0.85	NX 0.68	NY 0.59
	H	VLn + V_Swing / 2								1.94	1.00	1.//	1.09	PP	PQ	PR	PS	PT	PU	PV	PW	PX	PY
VHn	Р	ارج							1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.10	1.01	0.85	0.76	0.59	0.51
	Q	Ė											QN	QP	QQ	QR	QS	QT	QU	QV	QW	QX	
		>						1.94	1.86	1.77	1.69	1.61 RM	1.52 RN	1.44 RP	1.35 RQ	1.27 RR	1.18 RS	1.01 RT	0.93 RU	0.76 RV	0.68 RW	0.51	0.42
	R						1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	0.93	0.85	0.68	0.59	0.42	0.34
	s										SL	SM	SN	SP	SQ	SR	SS	ST	SU	SV	SW		
	_					1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.85	0.76	0.59	0.51	0.34	0.25
	т				1.94	1.86	1.77	1.69	1.61	TK 1.52	TL 1.44	TM 1.35	TN 1.27	TP 1.18	TQ 1.10	TR 1.01	TS 0.93	TT 0.76	TU 0.68	TV 0.51	0.42	0.25	
					1.54	1.00	1.77	1.03	UJ	UK	UL	UM	UN	UP	UQ	UR	US	UT	UU	-0.51	-0.42	0.23	
	U			1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.68	0.59	0.42	0.34		
	v		1.04	1.00	1 22	1.60	1.61	VH	VJ	VK	VL	VM	VN	VP	VQ	VR	VS	VT	VU	0.24	0.25		
	\vdash		1.94	1.86	1.77	1.69	1.61 WG	1.52 WH	1.44 WJ	1.35 WK	1.27 WL	1.18 WM	1.10 WN	1.01 WP	0.93 WQ	0.85 WR	0.76 WS	0.59 WT	0.51	0.34	0.25		
	w		1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.51	0.42	0.25			
	х					XF	XG	ХН	XJ	ХК	XL	XM	XN	XP	XQ	XR	XS						
	H		1.77	1.69	1.61 YE	1.52	1.44 YG	1.35	1.27 YJ	1.18 YK	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.42	0.34				
	Y		1.69	1.61	1.52	YF 1.44	1.35	YH 1.27	1.18	1.10	YL 1.01	YM 0.93	YN 0.85	YP 0.76	YQ 0.68	YR 0.59	YS 0.51	0.34	0.25				
	z			ZD	ZE	ZF	ZG	ZH	ZJ	ZK	ZL	ZM	ZN	ZP	ZQ	ZR							
			1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.25					
	1		1C	1D	1E 1.35	1F	1G	1H	1J	1K 0.93	1L 0.85	1M 0.76	1N	1P 0.59	1Q 0.51	0.42	0.34						
	\vdash		1.52 2C	1.44 2D	2E	1.27 2F	1.18 2G	1.10 2H	1.01 2J	0.93 2K	0.85 2L	2M	0.68 2N	0.59 2P	0.51	0.42	0.54						
	2		1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25						
	3		3C	3D	3E	3F	3G	3H	3J	3K	3L	3M	3N										
			1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25							

Note:

6. Please contact SiTime.

Test Circuit Diagrams

A 1.5 pF capacitive load is used at each differential output. Because of the additive input capacitance of the active probe used with the oscilloscope, the output characteristics for all signal types are measured with a total of 2 pF capacitive load.

Test Setups for LVPECL Measurements

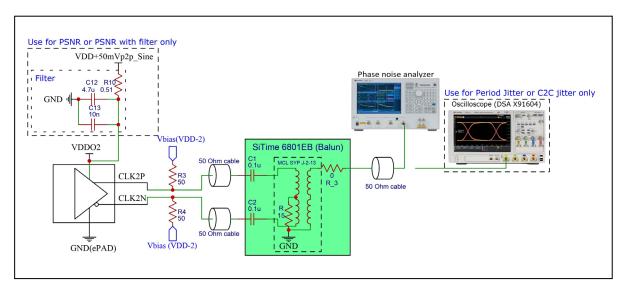


Figure 2. Test setup to measure LVPECL Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) without filter added^[8]

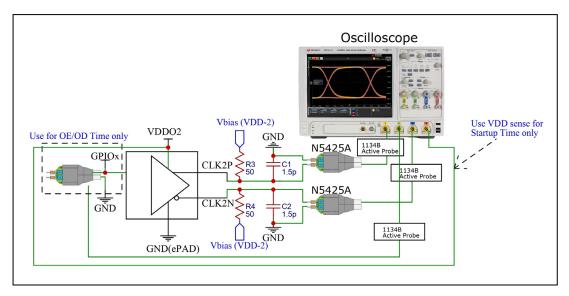


Figure 3. Test setup to measure LVPECL Waveform Characteristics, Current Consumption (with Termination 2)^[9], Output Enable/Disable Time, and Startup Time

Notes:

- 7. See Figure 4 for the test setup to measure LVPECL Power Supply-Induced Phase Noise (PSPN) with filter added.
- 8. See Figure 5 for the test setup to measure LVPECL Current Consumption with Termination 1 or without Termination.

Test Setups for FlexSwing Measurements^[10]

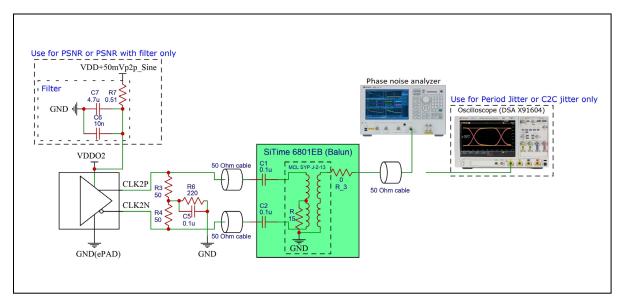


Figure 4. Test setup to measure FlexSwing Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) with and without filter added^[11]

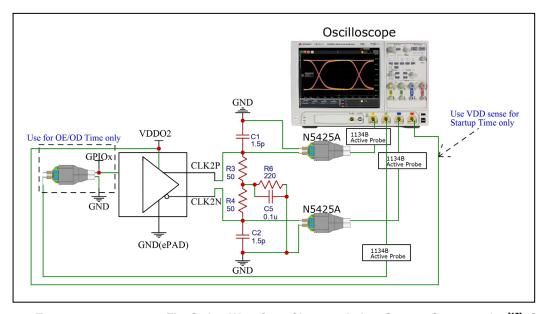


Figure 5. Test setup to measure FlexSwing Waveform Characteristics, Current Consumption^[12], Output Enable/Disable Time, and Startup Time

Note:

- 9. The same test circuits are used for FlexSwing referenced to VDD and FlexSwing referenced to GND.
- 10. Test setup is also used to measure LVPECL Power Supply-Induced Phase Noise (PSPN) with filter added.
- 11. Test setup is also used to measure LVPECL Current Consumption with Termination 1 or without Termination.

Test Setups for LVDS Measurements

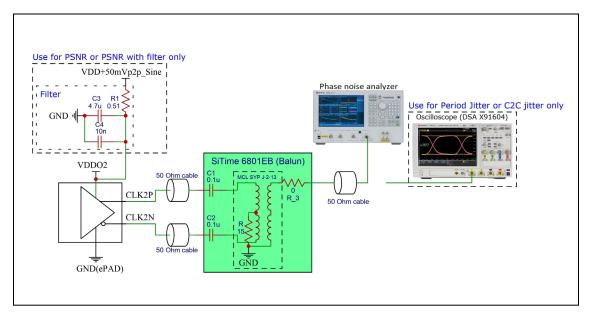


Figure 6. Test setup to measure LVDS Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) with and without filter added

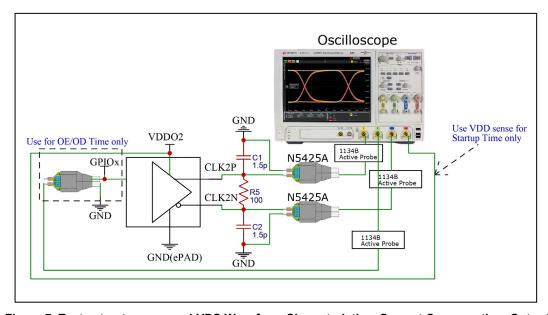


Figure 7. Test setup to measure LVDS Waveform Characteristics, Current Consumption, Output Enable/Disable Time, and Startup Time

Test Setups for HCSL Measurements

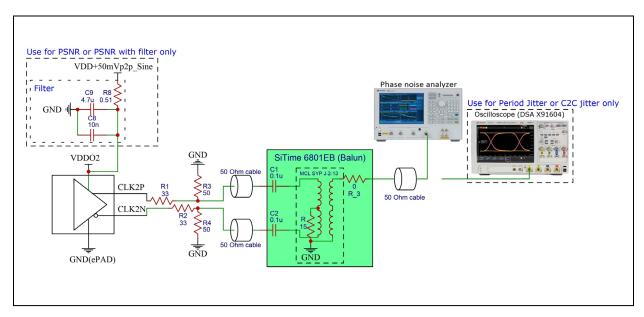


Figure 8. Test setup to measure HCSL Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) with and without filter added

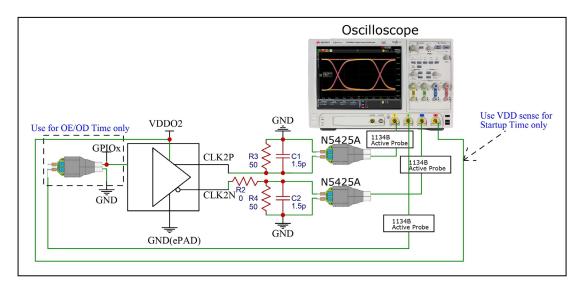


Figure 9. Test setup to measure HCSL Waveform Characteristics, Current Consumption, Output Enable/Disable Time, and Startup Time

Test Setups for Low-Power HCSL Measurements

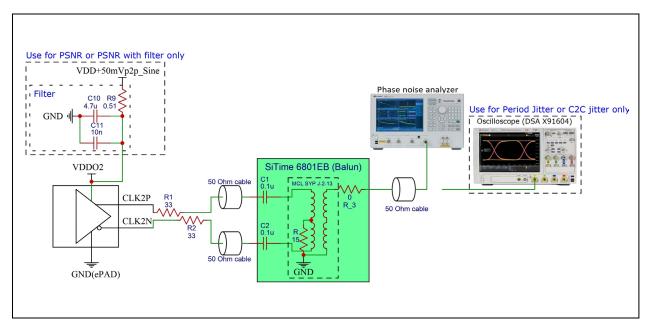


Figure 10. Test setup to measure Low-Power HCSL Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) with and without filter added

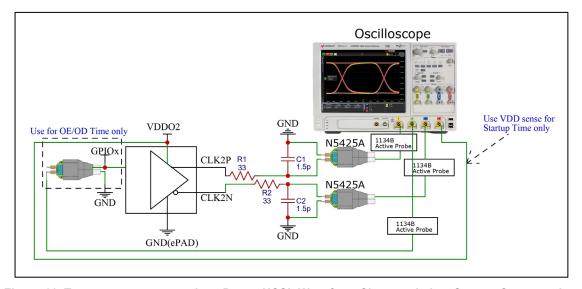


Figure 11. Test setup to measure Low-Power HCSL Waveform Characteristics, Current Consumption,
Output Enable/Disable Time, and Startup Time

Waveform Diagrams

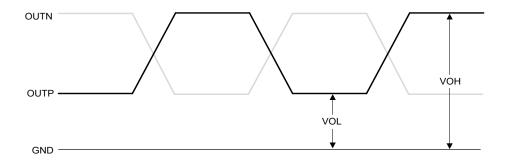


Figure 12. LVPECL, HCSL, Low-Power HCSL, and FlexSwing Voltage Levels per Differential Pin

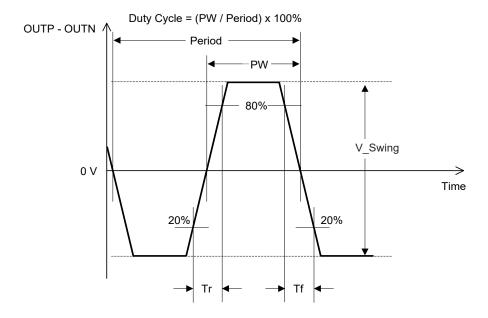


Figure 13. LVPECL, LVDS, HCSL, Low-Power HCSL, and FlexSwing Voltage Levels Across Differential Pair

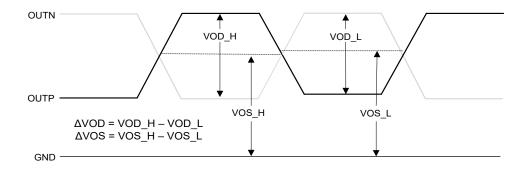


Figure 14. LVDS Voltage Levels per Differential Pin

Waveform Diagrams (continued)

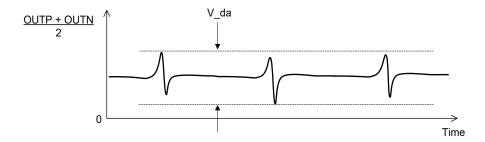


Figure 15. Differential Asymmetry (V_da)

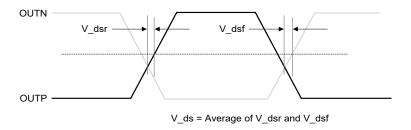


Figure 16. Differential Skew (V_ds) is measured as the Time between the Average Voltage Level and Crossing Voltage

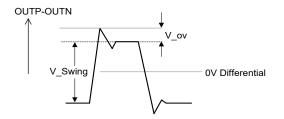


Figure 17. Overshoot Voltage (V_ov) for LVPECL, FlexSwing, HCSL, Low-power HCSL

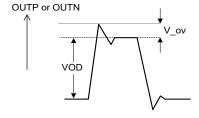


Figure 18. Overshoot Voltage (V_ov) for LVDS Output

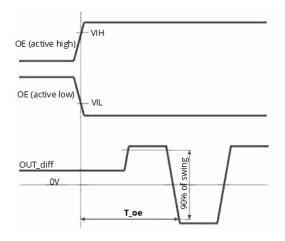


Figure 19. OE Pin Enable Timing (T_oe)

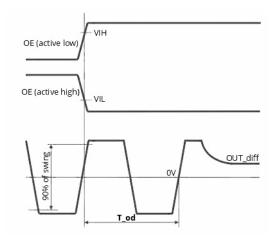


Figure 20. OE Pin Disable Timing (T_od)

Termination Diagrams

LVPECL and FlexSwing Termination

The NeoLite-4 FlexSwing output drivers support low power without sacrificing signal integrity via simple terminations as shown in Figure 22 and Figure 24, compared to traditional LVPECL drivers. The FlexSwing and LVPECL outputs are

voltage-mode drivers. Use the table and figures below to select a termination circuit for the desired supply voltage. The table also provides LVPECL current consumption (I load) into the load termination.

Table 12. Termination Options for LVPECL and FlexSwing Signaling

Signaling	Termination Options								
	Figure 21	Figure 22	Figure 23	Figure 24	Figure 25	Figure 26			
LVPECL referenced to Vdd	OK to use I_load = 40 mA with 100 Ω near-end bias resistor	Do Not Use	OK to use	OK to use	OK to use I_load = 28 mA	Do Not Use			
FlexSwing referenced to Vdd		OK to use (see Figure 22 for frequency ranges and voltage swings)	OK to use ¹⁴	OK to use	OK to use	Do Not Use			
FlexSwing referenced to Gnd	OK to use ¹³		Do Not Use	OK to use	Do Not Use	Do Not Use OK to use			

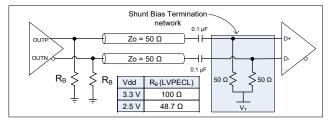


Figure 21. Recommended LVPECL and FlexSwing^[13]
Termination when AC-coupled

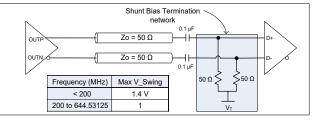


Figure 22. Recommended FlexSwing Termination when AC-coupled

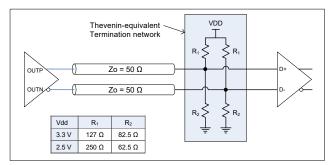


Figure 23. LVPECL and FlexSwing DC-coupled Load Termination with Thevenin Equivalent Network^[14]

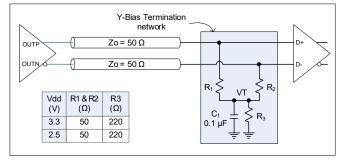


Figure 24. LVPECL and FlexSwing with Y-Bias
Termination

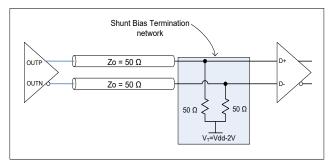


Figure 25. LVPECL and FlexSwing with DC-coupled Parallel Shunt Load Termination

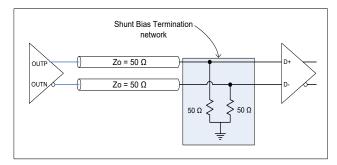
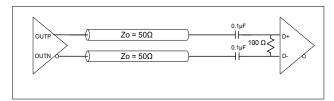



Figure 26. FlexSwing Termination – Only for use with Supply Voltage Order Code "18"

Termination Diagrams (continued)

LVDS, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V

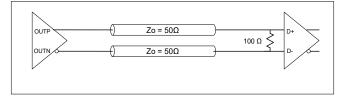


Figure 27. LVDS AC Termination

Figure 28. LVDS DC Termination at the Load

HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V

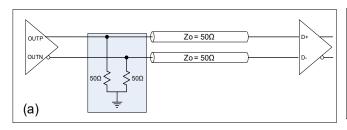


Figure 29. (a) HCSL Source Termination and (b) HCSL Load Termination

Low-power HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V

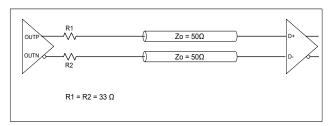


Figure 30. Low-power HCSL Termination

Notes:

- 12. Contact SiTime for optimum R_B values for FlexSwing options.
- 13. Contact SiTime for optimum R1 and R2 values for FlexSwing options.

Operating Temperature and Thermal Characteristics

Table 13. Operating Temperature and Thermal Characteristics

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition
Ambient Temperature	TA	-40		85	°C	Industrial Temperature Range
	TA	-40		105	°C	Extended Industrial Temperature Range
Junction Temperature	TJ			140	°C	
Thermal Resistance	θЈΑ		25.50		°C/W	Still Air
Junction to Ambient			20.80		°C/W	Air Flow 1m/s
			19.60		°C/W	Air Flow 2m/s
Thermal Resistance Junction to Case	θ _{JC}		8.70		°C/W	
Thermal Resistance Junction to Board	θЈВ		7.07		°C/W	
Thermal Resistance Junction to Top Center	ΨЈА		0.20		°C/W	

Table 14. Absolute Maximum Limits

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
V_{DD}			V
Electrostatic Discharge, HBM 100pF, 1.5kΩ	=	2000	V
Electrostatic Discharge, CDM	-	750	V
Latch up tolerance		JESD78 compliant	
Mechanical Shock Resistance, ΔF/F		10	kG
Mechanical Vibration Resistance, ΔF/F		70	G
Soldering Temperature (follow standard Pb free soldering guidelines)	-	260	°C
Junction Temperature ^[15]	-	150	°C

Note:

14. Exceeding this temperature for extended period of time may damage the device.

Table 15. Thermal Consideration[16]

Package	θJA, 4 Layer Board (°C/W)	θJA, 2 Layer Board (°C/W)
4 x 4 mm	TBD	TBD

Note

15. Refer to JESD51 for θ JA and θ JC definitions, and reference layout used to determine the θ JA and θ JC values in the above table.

Table 16. Maximum Operating Junction Temperature[17]

Max Operating Temperature (ambient)	Maximum Operating Junction Temperature
105°C	140°C

Note:

16. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.

Table 17. Environmental Compliance

Parameter	Test Conditions
Mechanical Shock Resistance	MIL-STD-883F, Method 2002
Mechanical Vibration Resistance	MIL-STD-883F, Method 2007
Temperature Cycle	JESD22, Method A104
Solderability	MIL-STD-883F, Method 2003
Moisture Sensitivity Level	MSL3

Package Pin-Out and Description (Preliminary)

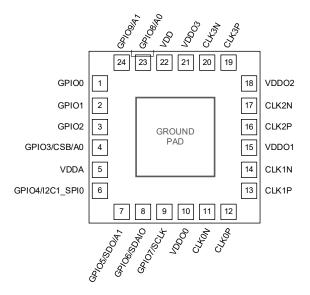
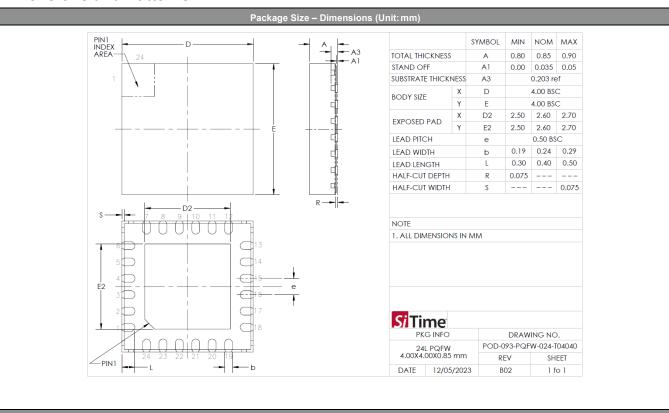
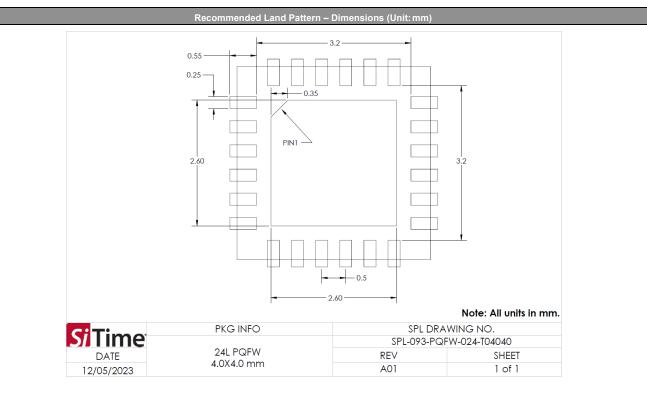


Figure 31. Top View

Table 18. Pin Description

table 10.1 iii Description						
Pin Name	I/O Type	Pin#	Pull-up (kΩ)	Pull-down (kΩ)	Function	Comments
GPIO0	I/O	1			Programmable Input / Output	
GPIO1	I/O	2			Programmable Input / Output	
GPIO2	I/O	3			Programmable Input / Output	
GPIO3/CSB/A0	I/O	4			Programmable Input / Output / SPI Chip Select / I2C A0 Address bit	
VDDA	PWR	5			Analog Power Supply	
GPIO4/I2C1_SPI0	I/O	6			Programmable Input / Output / Select between SPI or I2C	
GPIO5/SDO/A1	I/O	7			Programmable Input / Output / SPI Data Output (SDO) / I2C A1 Address bit	
GPIO6/SDAIO	I/O	8			Programmable Input / Output / SPI Input Data (SDI) / I2C Data (SDA)	
GPI07/SCLK	I/O	9			Programmable Input / Output / SPI / I2C Clock	
VDD00	PWR	10			Supply Voltage for CLK0	
CLK0N	0	11		Differential / LVCMOS Clock Output		
CLK0P	0	12			Differential / LVCMOS Clock Output	
CLK1P	0	13			Differential / LVCMOS Clock Output	
CLK1N	0	14			Differential / LVCMOS Clock Output	
VDD01	PWR	15			Supply Voltage for CLK1	
CLK2P	0	16			Differential / LVCMOS Clock Output	
CLK2N	0	17			Differential / LVCMOS Clock Output	
VDDO2	PWR	18			Supply Voltage for CLK2	
CLK3P	0	19			Differential / LVCMOS Clock Output	
CLK3N	0	20			Differential / LVCMOS Clock Output	
VDDO3	PWR	21			Supply Voltage for CLK3	
VDD	PWR	22			Digital Power Supply	





GPIO8/A0	I/O	23	Programmable Input / Output / SPI Chip Select / I2C A0 Address bit	
GPIO9/A1	I/O	24	Programmable Input / Output / SPI Chip Select / I2C A1 Address bit	

Dimensions and Patterns

Additional Information

Table 19. Additional Information

Document	Description	Download Link
Manufacturing Notes	Tape & Reel dimension, reflow profile and other manufacturing related info	https://www.sitime.com/sites/default/files/gated/Manufacturing-Notes-for-SiTime-Products.pdf
Qualification Reports	RoHS report, reliability reports, composition reports	http://www.sitime.com/support/quality-and-reliability
Performance Reports	Additional performance data such as phase noise, current consumption, and jitter for selected frequencies	http://www.sitime.com/support/performance-measurement-report
Termination Techniques	Termination design recommendations	http://www.sitime.com/support/application-notes
Layout Techniques	Layout recommendations	http://www.sitime.com/support/application-notes
ECCN #: EAR99	Five-character designation used on the Commerce Control List (CCL) to identify dual use items for export control purposes.	
HTS Classification Code: 8542.39.0000	A Harmonized Tariff Schedule (HTS) code developed by the World Customs Organization to classify/define internationally traded goods.	

Revision History

Table 20. Revision History

Version	Release Date	Change Summary
0.0	2-Jun-2022	Initial version
0.1	6-Jun-2022	Spec. updates and Pin out changes
0.2	9-Jun-2022	Additional clean up
0.25	13-Feb-2023	Added Output type specifications Added Dimensions drawings
0.26	28-Feb-2023	Updated Ordering Information with Freq Stability code Organized Additional Information table links
0.30	26-Jan-2024	Updated GPIO Table. GPIO inputs configurable active high and low. Updated Package Drawings, GPIO table, pin descriptions, fixed device description and electrical characteristics
0.31	28-Mar-2024	Updated the PSNR Specs for each output driver
0.40	01-May-2024	Updated the DCO function, Power Up Sequence and HCSL source termination

SiTime Corporation, 5451 Patrick Henry Drive, Santa Clara, CA 95054, USA | Phone: +1-408-328-4400 | Fax: +1-408-328-4439

© SiTime Corporation 2022-2024. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. This product is not suitable or intended to be used in a life support application or component or to operate nuclear facilities, or in other applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.