Description

The Chorus SiT91211 is a low phase noise MEMS-based clock generator designed for low-power, low jitter applications. The device has a single clock domain and can drive up to 8 low-skew single-ended output loads or 4 low-skew differential loads.

The Chorus SiT91211 integrates an internal MEMS resonator as the frequency source for the internal PLL, eliminating the need for an external oscillator or resonator. The integrated MEMS improves system reliability by eliminating traditional clock generator's requirements for an external quartz and along with it, issues like activity dips due to shock and vibration and matching requirements.

The device is fully configurable in output frequency, clock output buffer type (differential and LVCMOS) and individual output enables, through the serial interface. Internal monitor flags and alarm conditions can be configured to be reported through GPIOs.

The device is compliant with PCIe Generation 1-6 including configurable spread-spectrum clocking.

User-defined, pre-programmed, and user-programmable NVM enables a high degree of flexibility and defined startupconfiguration. Configurable GPIO pins support state changes such as individual output enable selection.

Features

- Standard Frequencies from 1 MHz to 700 MHz
- Fully integrated MEMS-based clock source
- Configurable clock domain and 4 differential outputs or 8 single-ended outputs

SiTime

- Configurable output clock drivers: • LVDS, HCSL, LVPECL, LVCMOS
- Excellent frequency stability
 - ±20 ppm (-40°C to 105°C)
 - ±50 ppm (-40°C to 105°C)
- Configurable spread-spectrum clock generation
- Compliant with PCIe Generation 1 to 6
- Clock fault monitors (Lock Loss)
- Supply voltage of 1.8 V to 3.3 V
- Low phase jitter, 200 fs maximum (12 kHz-20 MHz)
- Resistant to shock/vibration
- Max. Operating range: -40°C to 105°C
- I²C or SPI serial interface for configuration
- QFN 24 pin 4 x 4 mm, 0.5 mm pitch (wettable flank) package

Applications

- Datacenter, Switches, Smart NIC
- Wireless 5G infrastructure equipment
- High Speed Links: Ethernet, Optical
- High Speed Interconnect: PCIe and SerDes

Block Diagram

Table of Contents

Description	
Features	
Applications	
Block Diagram	
Ordering Information	
Functional Description	
Chip Status Monitoring	
General Purpose Inputs	
Power Supply Sequencing	
Electrical Characteristics	
FlexSwing Configurations	
Test Circuit Diagrams	
Test Setups for LVPECL Measurements	
Test Setups for FlexSwing Measurements ^[10]	
Test Setups for LVDS Measurements	
Test Setups for HCSL Measurements	
Test Setups for Low-Power HCSL Measuremen	nts 1'
Waveform Diagrams	
Termination Diagrams	
LVPECL and FlexSwing Termination	
LVPECL and FlexSwing Termination LVDS, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%,	21 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V
LVPECL and FlexSwing Termination LVDS, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%,	2: 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V
LVPECL and FlexSwing Termination LVDS, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, Low-power HCSL, Supply Voltage: 1.8 V ±5%, 2	2 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V
LVPECL and FlexSwing Termination LVDS, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, Low-power HCSL, Supply Voltage: 1.8 V ±5%, 2 Operating Temperature and Thermal Characteristics	2: 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V
LVPECL and FlexSwing Termination LVDS, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, Low-power HCSL, Supply Voltage: 1.8 V ±5%, 2 Operating Temperature and Thermal Characteristics Package Pin-Out and Description (Preliminary)	2 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V
LVPECL and FlexSwing Termination LVDS, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, Low-power HCSL, Supply Voltage: 1.8 V ±5%, 2 Operating Temperature and Thermal Characteristics Package Pin-Out and Description (Preliminary) Dimensions and Patterns	2 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V
LVPECL and FlexSwing Termination LVDS, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, Low-power HCSL, Supply Voltage: 1.8 V ±5%, 2 Operating Temperature and Thermal Characteristics Package Pin-Out and Description (Preliminary) Dimensions and Patterns	2 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V
LVPECL and FlexSwing Termination LVDS, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, Low-power HCSL, Supply Voltage: 1.8 V ±5%, 2 Operating Temperature and Thermal Characteristics Package Pin-Out and Description (Preliminary) Dimensions and Patterns Additional Information Revision History	2 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V

Ordering Information

Notes:

- 1. X = "A" and "B" customer device, "C to "Z" reserved. A: Denotes blank devices.
- B: Denotes Pre-configured devices, contact SiTime for the specifics.
- 2. Y = 0...9, A...Z for custom serial ID.

Functional Description

The Chorus SiT91211 is a commercial grade, low-jitter clock generator with an integrated SiTime MEMS resonator targeting applications in the Communications, Enterprise and Industrial segments. The Chorus SiT91211 can provide 4 configurable differential or 8 single-ended low skew outputs, or a combination of both. Differential outputs can be configured up to a maximum clock frequency of 700 MHz, while single ended outputs can be configured up to a maximum clock frequency of 220 MHz. The integrated MEMS resonator enables the Chorus SiT91211 to be operated without an external quartz crystal or oscillator reference, thereby eliminating the need for associated matching requirements.

The output drivers support commonly used signal formats, such as LVPECL, LVDS, HCSL, LVCMOS, as well as FlexSwing. Individual VDDO pins, capable of accepting between 1.8 V and 3.3 V, are available for each differential output driver, The core voltage supply (VDD, VDDA) accepts 3.3 V, 2.5 V, or 1.8 V and is independent from the output supplies (VDDO).

The SiT91211 combines SiTime's highly reliable MEMS resonator with a wideband PLL, on-chip temperature compensation, and four integer dividers to generate high-performance outputs with typical jitter of 150 fs and frequency stability of ± 20 ppm or ± 50 ppm across the wide temperature range, -40° C to 105° C. The Chorus SiT91211's on-chip regulators ensure extremely good power supply noise rejection, ensuring minimal deviation from the jitter specification due to power supply noise. Spread spectrum modulation is available in the Chorus SiT91211, to help reduce electromagnetic interference (EMI) by spreading output clock energy over a broader range.

The elimination of an external reference clock source leads to improved ease of use by eliminating the need for any matching or frequency jump issues. Importantly for mission critical applications, all dependence on quartz crystals (which have been shown to be prone to high failure rates) is eliminated. In addition to improved failure rates, internal functions such as the MEMS reference clock, bandgap reference, PLL, and VDDOs, and output drivers are monitored. This is a significant improvement over common on-chip status monitors in clock generator chips. Fault conditions on these monitored functions can be configured to be sent out to GPIO outputs individually or as a combined alarm signal or read via I²C or SPI interface. This allows an external MCU to be alerted to a fault condition in the clock generator to take appropriate action consistent with system requirements.

The Chorus SiT91211 is available optionally with or without a serial interface (I²C or SPI). The serial interface can be used to read internal registers, including status of the internal monitoring functions. A user can use In-System Configuration (ISC) mode to write to contents of internal registers to modify the device configuration via the serial interface. In such a use case, the modified configuration will be lost at the next power cycle. The Chorus SiT91211 allows the user to burn the new configuration into the NVM via the In-System Programming (ISP) Mode, which will then be the new default configuration at the next power cycle.

Optionally, the user can store up to four different static clock configurations in the Chorus SiT91211 NVM, one of which is selectable at power-up based on the status sampled on the two Frequency Select pins. The four static configurations cannot be modified using ISP mode, but ISC mode can still be used to modify internal register contents.

For applications which require only a standard configuration, the Chorus SiT91211 is also available as a factory configured device without a serial interface, which allows the use of the serial interface pins as additional GPIOs. SiTime will program the NVM to configure the devices according to specific customer requirements.

The SiT91211 also supports Digitally Controlled Oscillator (DCO) Mode in which the user can modulate the output frequencies via serial interface (I2C/SPI). The user can control two registers which modulate the internal Voltage Controlled Oscillator (VCO) in the PLL. All enabled outputs will change simultaneously in response to the VCO update. The VCO tuning range is +/- 800ppm with an increment or decrement step size of 0.023 ppt. This can be achieved by writing to a 36-bit DCO tuning register. A second 20-bit register allows the user to limit or clip the tuning range to less than +/- 800ppm. The clipped tuning range can be set with a step size of 0.753 ppb.

Chip Status Monitoring

The Chorus SiT91211 monitors multiple internal parameters and makes these status monitoring functions available to an external MCU via GPIO pins or through direct access of internal registers via I²C/SPI. All the status signals listed in the table below, are also accessible via register reads over the serial interface (I²C or SPI).

Table 1. Status Monitoring Signals

Monitoring Function	Monitored on GPIO Pin (Parts without I²C/SPI)	Monitored on GPIO Pin (Parts with I ² C/SPI)	Function						
MEMS Clock Monitor	Pin 2 / 3 / 4 / 6 / 7 / 23 / 24	Pin 2 / 3 / 23 / 24	Goes low when internal MEMS clock does not oscillate						
Bandgap Monitor	Pin 2 / 3 / 4 / 6 / 7 / 23 / 24	Pin 2 / 3 / 23 / 24	Goes low when internal band gap reference falls below threshold						
PLL Lock Monitor	Pin 2 / 3 / 4 / 6 / 7 / 23 / 24	Pin 2 / 3 / 23 / 24	Goes low when PLL loses lock with MEMS reference clock						
Clock0 Ready	Pin 2	Pin 2	Goes low when Clock0 driver is not toggling / has a fault						
Clock1 Ready	Pin 3	Pin 3	Goes low when Clock1 driver is not toggling / has a fault						
Clock2 Ready	Pin 23	Pin 23	Goes low when Clock2 driver is not toggling / has a fault						
Clock3 Ready	Pin 24	Pin 24	Goes low when Clock3 driver is not toggling / has a fault						
Clock01 Ready	Pin 6	-	Goes low when Clock0 or Clock1 driver are not toggling / have a fault						
Clock23 Ready	Pin 7	-	Goes low when Clock2 or Clock3 driver are not toggling / have a fault						
VDDO0 Good	Pin 2	Pin 2	Goes low when VDDO0 supply is below NVM-configured threshold						
VDDO1 Good	Pin 3	Pin 3	Goes low when VDDO1 supply is below NVM-configured threshold						
VDDO2 Good	Pin 23	Pin 23	Goes low when VDDO2 supply is below NVM-configured threshold						
VDDO3 Good	Pin 24	Pin 24	Goes low when VDDO3 supply is below NVM-configured threshold						
All Clocks Ready	Pin 2 / 3 / 4 / 6 / 7 / 23 / 24	Pin 2 / 3 / 23 / 24	Goes low when any enabled clock output is not toggling / has a fault						
Alarm_B	Pin 2 / 3 / 4 / 6 / 7 / 23 / 24	Pin 2 / 3 / 23 / 24	Goes low when any fault is triggered						
ISP_Burn_Success	Pin 4	(Access via register read)	Asserted when in-system NVM burn is successful						
VDDO01 Good	Pin 6	-	Goes low when VDDO0 or VDDO1 are below NVM-configured thresholds						
VDDO23 Good	Pin 7	-	Goes low when VDDO2 or VDDO3 are below NVM-configured thresholds						
Die Temperature Out of Range	Accessible via reg	jister reads only	Asserted if die temperature is outside user configured range. Available via direct register access through I ² C/SPI						

General Purpose Inputs

Table 2. User Configurable Input Signals^[3]

Input Function	Available on GPIO Pin (Parts without I ² C/SPI)	Available on GPIO Pin (Parts with I²C)	Available on GPIO Pin (Parts with SPI)	Function					
SSEN / SSEN	Pin 1 / 3 / 4 / 8	Pin 1 / 3 / 4	Pin 1 / 3	Spread Spectrum enabled on all outputs (configurable active high or low)					
OE0 / OE0	Pin 2 / 3	Pin 2 / 3	Pin 2 / 3	Enable Output 0 (configurable active high or low)					
OE1 / OE1	Pin 2 / 3	Pin 2 / 3	Pin 2 / 3	Enable Output 1 (configurable active high or low)					
OE2 / OE2	Pin 1 / 6 / 7	Pin 1 / 6 / 7	Pin 1 / 6	Enable Output 2 (configurable active high or low)					
OE3 / OE3	Pin 1 / 6 / 7	Pin 1 / 6 / 7	Pin 1 / 6	Enable Output 3 (configurable active high or low)					
OE_all / OE_all	Pin 2 / 7	Pin 2 / 7	Pin 2	Enable all Outputs (configurable active high or low)					
FS0	Pin 9 / 23	Pin 23	Pin 23	Frequency Select 0					
FS1	Pin 8 / 24	Pin 24	Pin 24	Frequency Select 1					

Note:

3. The I²C and SPI pins can be reconfigured, in factory, as GPIO pins. Such parts (without the I²C or SPI interface) can be ordered directly only from SiTime.

Power Supply Sequencing

The core power supplies (VDDA and VDD) are required to be at the same voltage. VDDOx can be chosen independently as required by the clock receiver. All VDDOx can be sequenced independently of each other and VDD/VDDA. However, VDD and VDDA should be brought up together.

Electrical Characteristics

All Min and Max limits in the Electrical Characteristics tables are specified over operating temperature and rated operating voltage with standard output termination shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage. See Test Circuit Diagrams for the test setups used with each signaling type.

Table 2		Characteristics	Commonto	A II 4		a na lina	Tuman
Table 5.	Electrical	Unaracteristics -	· Common to	AIII	υμιρμί διά	inaiinu	Types

				, ,											
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition									
				Frequency Ra	ange										
	f			700	MHz	Differential clock outputs, LVDS, LVPECL, FlexSwing									
Output Frequency Range	f			350	MHz	Differential clock outputs, HCSL, LPHCSL									
	f			220	MHz	Single-ended (LVCMOS) clock outputs									
				Frequency Sta	ability										
E		-	_	±20	ppm	Inclusive of initial tolerance, operating temperature -40°C to									
Frequency Stability	F_stab	-	-	±50	ppm	105° C, rated power supply voltage, load variation of 2 pF \pm 10%, and 10 years aging at 85°C									
				Temperature F	Range										
Operating Temperature	_	-40	_	+85	°C	Industrial, ambient temperature									
Range	T_use	-40	_	+105	°C	Extended industrial, ambient temperature									
				Supply Volta	age										
		1.71	1.80	1.89	V										
Supply Voltage		2.25	2.50	2.75	V										
		2.97	3 30	3 63	V										
		2.01	0.00	Core Curre	ent .										
Core Current	bbl		-	55	mA	Total current consumed on the VDD and VDDA power domains									
	luu			Input Characte	ristics										
Input Voltage High	VIH	70%	_	_	Vdd	Logic High function for all input pins									
Input Voltage Low	VIL	_	_	30%	Vdd	Logic High function for all input pins									
				Output Charact	eristics										
Duty Cycle	DC	45	_	55	%	See Figure 13 for waveform									
			Sta	artup, OE and S	E Timina										
Startup Time	T start	_	1.2	2	ms	Measured from the time Vdd reaches its rated minimum value									
Output Enable Time	T_oe	-	-	600+1 clock cycles	ns	For all signaling types. Measured from the time OE pin toggles to enable logic level to the time clock pins reach 90% of final swing. See Figure 19 for waveform									
Output Disable Time	T_od	-	_	600+1 clock cycles	ns	Measured from the time OE pin toggles to disable logic level to the last clock edge. See Figure 20 for waveform									
		Jitter	and Phas	e Noise, measi	ured at f =	= 156.25 MHz									
RMS Phase Jitter ("4-16A")	T_phj		115	-	fs	"4-16A" 4MHz to 16MHz offset frequency integration bandwidth with Aliasing									
RMS Phase Jitter (random)	T_phj		150	200	fs	12 kHz to 20 MHz offset frequency integration bandwidth									
Spurious Phase Noise	T_spn	-	-	-95	dBc	12 kHz to 20 MHz offset frequency range									
RMS Period Jitter ^[4]	T_jitt_per	-	0.5	0.6	ps	Measured based on 10K cycle									
Peak Cycle-to-cycle Jitter ^[4]	T_jitt_cc	-	3.5	6.2	ps	Measured based on 1K cycle									
			Syn	chronization ar	d Timing										
Output Skew	t _{SK,B}			150	ps										
			Spre	ad-Spectrum G	eneration	1									
Center Spread		-0.125		+0.125	%										
		-0.25		+0.25	%										
		-0.5		+0.5	%										
Down Spread		-0.25		0	%										
		-0.5		0	%										
Modulation Rate		31.05	31.25	31.45	%										
			DC	O Mode Charac	teristics	·									
Frequency Tuning Range	FRNG DCO	-800		+800	ppm	Tuning via I2C or SPI									
Frequency Step Resolution	FRES DCO		0.023		ppt	Increment/decrement 36-bit register									
Frequency Tuning Clipping			0.763		dqq										
Resolution			000		~~~										

Table 4. Electrical Characteristics – LVPECL | See Figure 2 and Figure 3 for test setups. Current consumption only accounts for VDDO and output driver stage. Measurements are with VDDO = 3.3V or 2.5V.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition						
		Curre	ent Consun	nption, f = [.]	156.25 MF	łz						
Current Consumption, Output Enabled without Termination	ldd_oe_nt	-	-	25	mA	Excluding load termination current VDDO=3.3V						
Current Consumption, Output Disabled without Termination	ldd_od_nt	-	-	13	mA	Excluding load termination current VDDO=3.3V, outputs are Hi-Z						
Current Consumption, Output		_	_	38	mA	Including load termination current as shown in Figure 24 for VDDO=3.3 V $\pm 10\%$ and R3=220 Ohms						
Enabled with Termination 1	Ida_oe_wt1	-	-	36	mA	Including load termination current as shown in Figure 24 for VDDO=2.5 V \pm 10% and R3=220 Ohms						
Current Consumption Output	ldd od wt1	-	-	26	mA	Including load termination current as shown in Figure 24 for VDDO =3.3 V ±10% and R3=220 Ohms. Driver output is held at last clock output levels.						
Disabled with Termination 1	lud_od_wi1	-	-	24	mA	Including load termination current as shown in Figure 24 for VDDO =2.5 V ±10% and R3=220 Ohms. Driver output is held at last clock output levels.						
Current Consumption, Output Enabled with Termination 2	ldd_oe_wt2	_	_	53	mA	Including load termination current. VDDO=3.3V See Figure 25 for termination						
Current Consumption, Output Disabled with Termination 2	ldd_od_wt2	-	-	41	mA	Including load termination current. See Figure 25 for termination. Driver output is held at last clock output levels.						
Output Characteristics												
Output High Voltage	VOH	Vdd-1.075	Vdd-0.95	Vdd-0.86	V	See Figure 12 for waveform, VDD 3.3V and 2.5V only						
Output Low Voltage	VOL	Vdd-1.84	Vdd-1.7	Vdd-1.62	V	See Figure 12 for waveform, VDD 3.3V and 2.5V only						
Output Differential Voltage Swing	V_Swing	1.4	-	1.8	V	See Figure 13 for waveform						
Rise/Fall Time	Tr, Tf	-	210	300	ps	20% to 80%. See Figure 13 for waveform						
Differential Asymmetry, peak-peak	V_da	-	-	85	mV	See Figure 15 for waveform						
Differential Skew, peak	V_ds	-	-	±25	ps	See Figure 16 for waveform						
Overshoot Voltage, peak	V_ov	-	-	12	%	Measured as percent of V_Swing. See Figure 17 for waveform						
		Powe	r Supply N	oise Immu	nity (VDD	0)						
Power Supply-Induced litter		-		10	fs/mV	50mV peak-peak ripple on VDD from 10 kHz to 20 MHz						
Sensitivity	PSJS	- 6		8	fs/mV	50mV peak-peak ripple on VDD from 10 kHz to 20 MHz Using RC power supply filter as shown in Figure 2						
Deven Oversky is deve at Diverse			-	-85	dBc	50 mV peak-peak ripple on VDD						
Noise	PSPN	+	-	TBD	dBc	50 mV peak-peak ripple on VDD. Using RC power supply filter as shown in Figure 2						
stime	<u>{</u> 0											

 Table 5. Electrical Characteristics – FlexSwing | See Figure 4 and Figure 5 for test setups. Current consumption only accounts for VDDO and output driver stage.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition						
		Cu	rrent Cons	umption, f =	= 156.25M	Hz						
Current Consumption, Output Enabled without Termination	ldd_oe_nt	_	_	25	mA	Excluding load termination current						
Current Consumption, Output Disabled without Termination	ldd_od_nt	-	-	13	mA	Excluding load termination current						
Current Consumption, Output	اطط مم ببط	-	-	35	mA	Including load termination current, for FlexSwing code "ER". See Figure 24 for VDDO =3.3 V \pm 10% and R3=220 Ohms						
Enabled with Termination	Idd_0e_wi	-	-	35	mA	Including load termination current, for FlexSwing code "ER". See Figure 24 for VDDO =2.5 V \pm 10%, and R3=220 Ohms						
Current Consumption Output Disabled with Termination	ldd od wt	-	-	23	mA	Including load termination current, for FlexSwing code "ER". See Figure 24 for VDDO =3.3 V ±10% and R3=220 Ohms. Driver output is held at last clock output levels.						
	ldd_0d_wi	-	-	23	mA	Including load termination current, for FlexSwing code "ER". See Figure 24 for VDDO =2.5 V ±10%, and R3=220 Ohms. Driver output is held at last clock output levels.						
Output Characteristics												
Output High Voltage	VOH	VHn -0.13	VHn	VHn +0.1	V	See Figure 12 for waveform; Refer to Table 10 or Table 11 order codes for nominal VOH (i.e. VHn) values						
Output Low Voltage	VOL	VLn -0.13	VLn	VLn +0.12	V	See Figure 12 for waveform; Refer to Table 10 or Table 11 order codes for nominal VOL (i.e. VLn) values						
Output Differential Voltage Swing	V_Swing	-0.2	2*(VHn- VLn)	+0.2	V	See Figure 13 for waveform						
Rise/Fall Time	Tr, Tf	-	250	300	ps	20% to 80%. See Figure 13 for waveform						
Differential Asymmetry, peak-peak	V_da	-	-	100	mV	See Figure 15 for waveform						
Differential Skew, peak	V_ds	-	-	±25	ps	See Figure 16 for waveform						
Overshoot Voltage, peak	V ov	-	_	12	%	Measured as percent of V_Swing.						
	-					See Figure 17 for waveform						
		Pov	ver Supply	Noise immi		DO)						
Power Supply-Induced Jitter		-		10	fs/mV	order code "ER"						
Sensitivity	PSJS	-		8	fs/mV	Power supply ripple from 10 kHz to 20 MHz. For FlexSwing order code "ER". Using RC power supply filter as shown in Figure 4						
Power Supply Induced Phase		-	-	-85	dBc	50 mV peak-peak ripple on VDDO. For FlexSwing order code "ER"						
Noise	PSPN	-	-	TBD	dBc	50 mV peak-peak ripple on VDDO. For FlexSwing order code "ER". Using R C power supply filter as shown in Figure 4						
STIME												

Table 6. Electrical Characteristics – LVDS | See Figure 6 and Figure 7 for test setups. Current consumption only accounts for VDDO and output driver stage.

Table 7. Electrical Characteristics – HCSL | See Figure 8 and Figure 9 for test setups. Current consumption only accounts for VDDO and output driver stage.

Current Consumption, 1= 162.25 MHz Earbided without Termination Iddoe_nt - - 25 nn Excluding load termination current Disabled without Termination Iddod_nt - - 25 nn Excluding load termination current Disabled without Termination Iddod_nt - - 10 10 0.1 V See Figure 12 for waveform Output Low Voltage VOL 0.60 0.7 0.95 V See Figure 12 for waveform Output Low Voltage VOL 0.1 0 0.1 V See Figure 13 for waveform Differential Asymmetry, peak-peak V_da - - 65 mV See Figure 16 for waveform Differential Skew, peak V_da - - 10 % Measured as percent of V Swing. Over Supply Induced Jitler PSJS - - 10 fs/mV Power supply riphe from 10 kHz to 20 MHz Power Supply-Induced Phase PSIN - - 10 fs/mV Power supply riphe from 10 kHz to 20 MHz </th <th></th> <th>Symbol</th> <th>Min.</th> <th>Тур.</th> <th>Max.</th> <th>Unit</th> <th>Condition</th>		Symbol	Min.	Тур.	Max.	Unit	Condition					
Current Consumption, Output Idd_oo_n - - 25 mA Excluding load termination current Current Consumption, Output Idd_od_nt - - 13 mA Excluding load termination current Output University Termination Output Characteristics Output 10 Output 10 Viewelow Output I cw Voltage VOL 0.0 0.1 0 1.1 Viewelow See Figure 12 for waveform Output I dw Voltage VOL 0.0 0.1 0.1 Viewelow See Figure 13 for waveform Output I dw Voltage VOL 0.0 1.1 1.4 1.6 V See Figure 13 for waveform Output I dw Voltage V.swing 1.1 1.4 1.6 V See Figure 13 for waveform Differential Skew, peak V.sking - - 10 % Measured as percent for Waveform Differential Skew, peak V_sking - - 10 % Measured as percent for Waveform Overshoot Voltage, peak V_sov - -<	Current Consumption Output											
Current Consumption, output Indodnt - - 13 mA Excluding load termination current Dubabled without Termination Output Characteristics - - 13 mA Excluding load termination current Output Ling Voltage VOH 0.05 0.7 0.95 V See Figure 12 for waveform Output Ling Voltage VOL 0.01 0 1 V See Figure 13 for waveform Output Ling Voltage Swing V_Swing 1.1 1.4 1.6 V See Figure 13 for waveform Differential Asymmetry, pask-pask V_da - - 65 mV See Figure 13 for waveform Differential Asymmetry, pask-pask V_da - - 10 film See Figure 16 for waveform Differential Stew, peak V_ov - - 10 film See Figure 16 for waveform Overshoot Voltage, peak V_ov - - 10 film New Figure 16 for waveform Overshoot Voltage, peak V_ov - - 10 </td <th>Current Consumption, Output Enabled without Termination</th> <td>ldd_oe_nt</td> <td>-</td> <td>_</td> <td>25</td> <td>mA</td> <td>Excluding load termination current</td>	Current Consumption, Output Enabled without Termination	ldd_oe_nt	-	_	25	mA	Excluding load termination current					
Output Light Voltage VOL 0.60 0.7 0.95 V See Figure 12 for waveform Output Low Voltage VOL 4.0.1 0 0.1 V See Figure 12 for waveform Output Librerential Voltage Swing V Swing 1.1 1.4 1.6 V See Figure 13 for waveform Bise/Fail Time Tr. Tf - 250 300 PS Measured 20% to 80%. Differential Symmetry, peak-peak V_da - - 66 mVV See Figure 13 for waveform Differential Sew, peak V_da - - 65 mVV See Figure 13 for waveform Differential Sew, peak V_ds - - 10 9. See Figure 13 for waveform Overshoot Voltage, peak V_ov - - 10 9. Measured as precedim Power Supply-Induced Jitter PS/B - - 10 fs/mV Power Supply fipite from 10 kHz to 20 MHz Sometity PS/PN - - 8 fs/mV Power Supply f	Current Consumption, Output Disabled without Termination	ldd_od_nt	-	-	13	mA	Excluding load termination current					
Output Ligh Voltage VOH 0.60 0.7 0.95 V See Figure 12 for waveform Output Light Voltage VOL -0.1 0 0.1 V See Figure 12 for waveform Output Lifferential Voltage Swing V Ning 1.1 1.4 1.6 V See Figure 13 for waveform Differential Asymmetry, peak-peak V_da - - 65 mV See Figure 15 for waveform Differential Asymmetry, peak-peak V_da - - 65 mV See Figure 15 for waveform Overshoot Voltage, peak V_da - - 425 ps See Figure 15 for waveform Overshoot Voltage, peak V_da - - 10 % Measured as percent of V_Swing, See Figure 15 for waveform Overshoot Voltage, peak V_or - - 10 % Measured as percent of V_Swing, See Figure 17 for waveform See Figure 17 for waveform - - 10 fs/mt Power Supply/Inblued as percent of VD.0 See Figure 16 for mole field to VD.0 See Figure 17 for wa				Output	Characteris	stics						
Output Differential Voltage VOL -0.1 0 0.1 V See Figure 13 for waveform Output Differential Voltage Swing V_Swing 1.1 1.4 1.6 V See Figure 13 for waveform Rise/Fail Time Tr, Ti - 250 300 ps Measured 20% to 80%. Differential Skew, peak V_da - - 656 m.V See Figure 13 for waveform Differential Skew, peak V_ds - - 656 m.V See Figure 15 for waveform Orershoot Voltage, peak V_ov - - 10 % Measured as percent of V_sWing; See Figure 15 for waveform Power Supply-Induced Jitter PS/S - - 10 ff/mV Power Supply fright from 10 kHz to 20 MHz Power Supply-Induced Jitter PS/S - - 8 fm/V Supplies from 10 kHz to 20 MHz Power Supply-Induced Phase PS/N - - 85 dBb 50 mV peak-peak ripple on VDDO Power Supply-Induced Phase PS/N - - TBD dBb 50 mV pea	Output High Voltage	VOH	0.60	0.7	0.95	V	See Figure 12 for waveform					
Output Differential Voltage Swing V Swing 1.1 1.4 1.6 V See Figure 13 for waveform Rise/Fall Time Tr, Tf - 250 300 ps See Figure 13 for waveform Differential Asymmetry, paak-peak V_da - - 65 mV See Figure 13 for waveform Differential Skow, paak V_da - - 65 mV See Figure 13 for waveform Orershoot Voltage, peak V_da - - 10 % Measured as percent of V_Siving. See Figure 17 for waveform Overshoot Voltage, peak V_ov - - 10 %/mV Measured as percent of V_Siving. See Figure 30 for waveform Power Supply-Induced Jitter PSJS - - 10 fs/mV Powere'suppi ripple form 10 kHz to 20 MHz. 20 MHz. Using RC power supply filter as shown in Figure 3 Power Supply-Induced Phase PSPN - - - 86 60 mV peak-peak ripple on VDDO. Using RC power supply filter as shown in Figure 3	Output Low Voltage	VOL	-0.1	0	0.1	V	See Figure 12 for waveform					
Rise/Fall Time Tr, TT - 250 300 ps Measured 20% to 80%. Differential Asymmetry, peak-peak V, da - - 65 mV See Figure 15 for waveform Overshoot Voltage, peak V, ds - - 10 % See Figure 16 for waveform Overshoot Voltage, peak V, ds - - 10 % Measured 20% for waveform Power Supply-Induced Jitter PSJS - - 10 % Measured 20% for waveform Power Supply-Induced Jitter PSJS - - 10 fs/mV Power Supply-fipe from 10 kHz to 20 MHz. See Figure 17 for waveform PSJS - - 8 fs/mV Power Supply-fipe from 10 kHz to 20 MHz. Seesitivity PSJS - - 8 fs/mV Power Supply-fipe from 10 kHz to 20 MHz. See Figure 16 00 VDDO Roise PSPN - - T T B See Figure 16 00 VDO Noise PSPN - - T T B See Figure 16 00 VDO Noise PSPN -	Output Differential Voltage Swing	V_Swing	1.1	1.4	1.6	V	See Figure 13 for waveform					
Differential Asymmetry, peak-peak V. da - - 66 mV See Figure 15 for waveform Overshoot Voltage, peak V. ds - - 10 98 See Figure 15 for waveform Overshoot Voltage, peak V_ov - 10 10 98 See Figure 17 for waveform Dever Supply-Induced Jitter PS.IS - - 10 form Vector 17 for waveform Power Supply-Induced Jitter PS.IS - - 10 form Vector 10 kHz to 20 MHz Using RC power Sensitivity PS.IS - - 10 form Power supply inple from 10 kHz to 20 MHz Using RC power Supply-Induced Phase PSPN - - 48 form Power supply inple from 10 kHz to 20 MHz. Using RC power supply Noise PSPN - - 785 dBc 50 mV peak-peak ripple on VDDO. Using RC power supply Noise - - TBD dBc 50 mV peak-peak ripple on VDDO. Using RC power supply	Rise/Fall Time	Tr, Tf	-	250	300	ps	Measured 20% to 80%. See Figure 13 for waveform					
Differential Skew, peak V_ds - - +25 ps See Figure 16 for waveform Overshoot Voltage, peak V_ov - - 10 % Measured as percent of V_Swing. Power Supply Induced Jitter PSJS - - 10 % See Figure 17 for waveform Power Supply-Induced Jitter PSJS - - 10 % Measured as percent of V_Swing. Sensitivity PSJS - - 10 film/V Power supply inple from 10 kHz to 20 MHz. 20 MHz. Using RC power supply inple from 10 kHz to 20 MHz. 20 MHz. Using RC power supply inple from 10 kHz to 20 MHz. <	Differential Asymmetry, peak-peak	V_da	-	-	65	mV	See Figure 15 for waveform					
Overshoot Voltage, peak V_ov - - 10 % Measured as parcent of V_Swing. See Figure 17 for waveform Power Supply Induced Jitter Sensitivity PSJS - - 10 % Measured as parcent of V_Swing. See Figure 17 for waveform Power Supply Induced Jitter Sensitivity PSJS - - 10 fs/mV Power supply ripple from 10 kHz to 20 MHz. Using RC power supply lipple from 10 kHz to 20 MHz. Using RC power supply lipple from 10 kHz to 20 MHz. Using RC power supply lipple from 10 kHz to 20 MHz. Using RC power supply lipple from 10 kHz to 20 MHz. Using RC power supply lipple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply riple from 10 kHz to 20 MHz. Image:	Differential Skew, peak	V_ds	-	-	±25	ps	See Figure 16 for waveform					
Power Supply Noise Immunity (VDDO) Power Supply-Induced Jitter PSJS - - 10 Is/mV Power supply ripple from 10 kHz to 20 MHz. Sensitivity PSJS - - 8 fs/mV Power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Power Supply-Induced Phase - - 8 fs/mV Power supply ripple from 10 kHz to 20 MHz. Using RC power Supply-Induced Phase Power Supply-Induced Phase PSPN - - - 85 dtc 50 mV peak-peak ripple on VDDO Power Noise PSPN - - TBD dtc 50 mV peak-peak ripple on VDDO. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply ripple from 10 kHz to 20 MHz. Using RC power supply riple from 10 kHz to 20 MHz. Using RC power supply	Overshoot Voltage, peak	V_ov	-	-	10	%	Measured as percent of V_Swing. See Figure 17 for waveform					
Power Supply-Induced Jitter PSUS - - 10 fs/mV Power Supply fiple from 10 kHz to 20 MHz. Using RC power Supply fiple from 10 kHz to 20 MHz. Using RC power Supply finde as shown in Figure 8 Power Supply-Induced Phase PSPN - - - 8 fs/mV Power Supply finde from 10 kHz to 20 MHz. Using RC power Supply finde from 10 kHz to 20 MHz. Using RC power Supply finde from 10 kHz to 20 MHz. Power Supply-Induced Phase PSPN -			Pow	er Supply N	Noise Immu	nity (VDD	00)					
Power Supply-Induced Jitter PS.JS - - 8 fs/mV Power Supply inple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 8 Power Supply-Induced Phase - - - - 8 fs/mV Power supply inple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 8 Power Supply-Induced Phase PSPN - - - - 8 50 mV peak-peak ripple on VDDO Noise PSPN - - TBD dBc 50 mV peak-peak ripple on VDDO. Using RC power supply filter as shown in Figure 8	10 fs/mV Power supply ripple from 10 kHz to 20 MHz											
Power Supply-Induced Phase PSPN 85 dBc 50 mV peak-peak ripple on VDDO. Noise PSPN TBD dBe S0 mV peak-peak ripple on VDDO. Using RC power supply filter as shown in Figure 8	Power Supply-Induced Jitter Sensitivity	PSJS	-	-	8	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 8					
Power Supply-Induced Phase PSPN TBD dBc 50 mV peak-peak ripple on VDDO. Using RC power supply Riter as shown in Figure 8			-	-	-85	dBc	50 mV peak-peak ripple on VDDO					
sitime	Power Supply-Induced Phase Noise	PSPN	_	-	TBD	dBc	50 mV peak-peak ripple on VDDO. Using RC power supply filter as shown in Figure 8					
			i									

Table 8. Electrical Characteristics – Low-Power HCSL | See Figure 10 and Figure 11 for test setups. Current consumption only accounts for VDDO and output driver stage.

	Symbol	Min.	Тур.	Max.	Unit	Condition
		Cui	rrent Consi	umption, f =	= 156.25 N	/Hz
Current Consumption, Output Enabled without Termination	ldd_oe_nt	-	-	25	mA	Excluding load termination current, VDDO = 3.3V
Current Consumption, Output Disabled without Termination	ldd_od_nt	-	-	13	mA	Excluding load termination current, VDDO = 3.3V
			Output	Character	istics	
Output High Voltage	VOH	-	-	1.1	V	See Figure 12 for waveform
Output Low Voltage	VOL	-0.1	0	0.1	V	See Figure 12 for waveform
Output Differential Voltage Swing	V_Swing	1.4	1.83	2.0	V	See Figure 13 for waveform
Rise/Fall Time	Tr, Tf	-	250	300	ps	Measured 20% to 80%. See Figure 13 for waveform
Differential Asymmetry, peak-peak	V_da	-	-	85	mV	See Figure 15 for waveform
Differential Skew, peak	V_ds	-	-	±30	ps	See Figure 16 for waveform
Overshoot Voltage, peak	V_ov	-	-	10	%	Measured as percent of V_Swing. See Figure 17 for waveform
		Pow	er Supply	Noise Immu	unity (VD	DO)
Deven Oversky lands of 1997		_	-	10	fs/mV	Power supply ripple from 10 kHz to 20 MHz
Power Supply-Induced Jitter Sensitivity	PSJS	_	-	8	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 10
		_	-	-85	dBc	50 mV peak-peak ripple on VDD
Power Supply-Induced Phase Noise	PSPN	-	-	TBD	dBc	50 mV peak-peak ripple on VDD. Using RC power supply filter as shown in Figure 10
			3			

Table 9. Electrical Characteristics – Low-Voltage CMOS | Current consumption only accounts for VDDO and output driver stage.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition					
		C	Current Con	sumption,	f = 20 MH:	Z					
Current Consumption, Output Enabled	ldd_oe	_	_	14	mA	VDDO = 3.3V					
Current Consumption, Output Disabled	ldd_od	-	-	12	mA	VDDO = 3.3V					
		Outpu	t Character	istics (Star	idard LVC	CMOS)					
Output High Voltage	VOH	90%	-	-	V	IOH = -4mA, VDDO=3.3V					
Output Low Voltage	VOL	-	-	10%	V	IOL = 4mA, VDDO=3.3V					
Rise/Fall Time	Tr, Tf	-	-	5	ns	Measured 20% to 80% with default settings. SiT91211 has 20 programmable options for rise-time & fall-time.					
Duty Cycle		45	-	55	%	Measured in percentage of clock period					
Overshoot Voltage, peak	V_ov	-	-	10	%	Measured as percent of difference between VOH and VOL					
Output Characteristics (Regulated LVCMOS)											
Output High Voltage Regulated Range	VDDOreg	0.9		VDDO-0.3	V	Regulated VOH can be programmed with up to 20 steps					
Output High Voltage	VOH	90%	-	-	VDDOreg	IOH = -4mA, VDDO=3.3V					
Output Low Voltage	VOL	-	-	10%	VDDOreg	IOL = 4mA, VDDO=3.3V					
Rise/Fall Time	Tr, Tf	-	0.4	0.6	ns	Measured 20% to 80%, output frequency 20 MHz, load=8 pF. SiT91211 has programmable options for rise-time & fall-time.					
Overshoot Voltage, peak	V_ov	-	-	10	%	Measured as percent of difference between VOH and VOL					
		Pow	er Supply I	Noise Immu	inity (VD	DO)					
Power Supply-Induced Jitter Sensitivity	PSJS	-	-	20	fs/mV	Power supply ripple from 10 kHz to 20 MHz					
Power Supply-Induced Phase Noise	PSPN	-	-	TBD	dBc	50 mV peak-peak ripple on VDD					
Siline											

A FlexSwing output-driver performs like LVPECL and additionally provides independent control of voltage swing and DC offset voltage levels. This simplifies interfacing with chipsets having non-standard input voltage requirements and can eliminate all external source-bias resistors. FlexSwing supports power supply voltages from 1.71 V to 3.63 V, and the programmable VOH and VOL levels may be referenced to the voltage on either VDD or GND pins.

												<u>۱</u>	/Ln										
		Α	В	С	D	E	F	G	н	J	к	L	м	N	Р	Q	R	S	Т	U	v	w	х
	Order Code	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>
	V Swing (V)	3	56	51	16	Ŧ	8	5	96	10	8	8	E	2	6	62	15	22	47	45	31	33	38
		2	7	-2		72			볶	볶	두	불	Ξ	쿺	Ξ	쿺	불	쿺	7	두	코	코	코
		۶ I	۶ ا	۲qc	۶ ا	p V	۶ ا	/dc	۲qc	^b	۶,	۶¢	۶ کو	^b	۶ کو	p V	/qc	p V	ğ	ğ	ğ	Q Vd	۲q ا
		-		-	-	_	-		-	-	-	-	-	-	-	-	-	-	-	-			<u> </u>
	Δ									AJ	AK	AL	AM	AN	AP	AQ	AR	AS	AT	AU	AV	AW	AX
	~									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85
										BJ	BK	BL	BM	BN	BP	BQ	BR	BS	BT	BU	BV	BW	BX
	B								1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
										CJ	СК	CL	СМ	CN	СР	cq	CR	CS	СТ	CU	CV	CW	СХ
	C							1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68
										DJ	DK	DL	DM	DN	DP	DQ	DR	DS	DT	DU	DV	DW	DX
	D						1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59
	-						215-1	2.00		EI	EV	EI	EM	EN	ED	50	ED	ES	ET	ELL	EV/	EVA/	EV
	E					1.04	1.96	1 77	1 60	1.61	1.52	1 44	1.25	1 27	1 10	1 10	1 014	0.02	0.95	0.76	0.69	0.50	0.51
	_					1.54	1.00	1.//	1.05	1.01	1.52	1.44	1.55	1.27 EN	1.10 ED	1.10	1.014	0.95	0.85	0.70	0.00 EV/	0.55	0.51
	F					4.00	4.77	4.00		1 50	FK	1.05	FIVI		FP	FQ		F3	0.70		0.50	0.54	
				_	1.94	1.86	1.//	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.676	0.59	0.51	0.42
	G								GH	GJ	GK	GL	GM	GN	GP	GQ	GR	GS	GT	GU	GV		
	-			1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34
	н							HG	нн	HJ	нк	HL	нм	HN	HP	НQ	HR	HS	HT	HU			
			1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25
	1						JF	JG	JH	11	JK	JL	JM	JN	JP	JQ	JR	JS	JT				
	,	1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25	
	2					KE	KF	KG	КН	KJ	KK	KL	KM	KN	KP	KQ	KR	KS					1
	× 8	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25		
	, ix				LD	LE	LF	LG	LH	IJ	LK	LL	LM	LN	LP	LQ	LR						
VHN	L >	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25			
	±			MC	MD	ME	MF	MG	МН	MJ	МК	ML	ММ	MN	MP	MQ							
	M 2	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25				
	-	2.05	NB	NC	ND	NE	NE	NG	NH	NI	NK	NI	NM	NN	NP	0.01	0112	0.01	0125				
	N	1 61	1 52	1 14	1 25	1 27	1 1 2	1 10	1 01	0.02	0.95	0.76	0.69	0.50	0.51	0.42	0.24	0.25					
	-	1.01	1.52	1.44	1.33	1.27	1.10	1.10	1.01	0.55	0.05	0.70	0.00	0.33	0.51	0.42	0.34	0.23					-
	P	1.52	PD	1.25	1.07	1 10	1 10	1.01	0.02	0.05	0.70	PL 0.C0		PIN	0.42	0.24	0.35						
	-	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25						
	Q	QA	UB 1 35	UC 1 27	UD 1.10	QE	UF	QG	QH 0.05	0.70	QK CO	QL	QIVI	0.42	0.00	0.05							
		1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25							
	R	RA	RB	RC	RD	RE	RF	RG	RH	RJ	RK	RL						Suppl	y Voltag	ge Ava	ailable C	Colors	
		1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25			1.8	3V±5%	No	ot Suppo	orted	
	s	SA	SB	SC	SD	SE	SF	SG	SH	SJ	SK							1 71V	to 3 63	V No	nt Suppo	orted	1
		1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25				2.71	V+10%		Rlue	in tee d	
	-	TA	тв	тс	TD	TE	TF	TG	TH	TJ								2.5	V110/0	01	Biue		
	'	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25					3.3	V±10%	BI	Je -	Red	4
		UA	UB	UC	UD	UE	UF	UG	UH									2.25V	to 3.63	V	Blue		
	0	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25						N	lote 4		Gray		
		VA	VB	vc	VD	VE	VF	VG															
	v	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25												
		WA	WB	wc	WD	WE	WE																1
	w	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25													
	1	0.55	0.05	0.70	0.00	0.55	0.51	100.04	0.04	0.12.3		1	1	1		1				1			1

Table 10^[6]. FlexSwing 2-digit Codes specifying VHn and VLn referenced to voltage on VDD pin

Note:

4. Please contact SiTime.

5. Table based on Y-Bias Termination with R3 = 220. See Figure 24.

The above table identifies supported combinations of nominal VOH (i.e. VHn) and nominal VOL (i.e. VLn) in colored boxes. The two-character code in each box corresponds to the VHn and VLn codes specified in the 2^{nd} column and 2^{nd} row in the table, respectively. The number in each box indicates the nominal differential swing (i.e. VHn – VLn).

For example, code "FS" selects VHn code "F" (i.e. Vdd-1.144 V) and VLn code "S" (i.e. Vdd-1.530 V) corresponding to a V_Swing of 0.845 V peak-peak, which may be used for supply voltages of 2.5 V \pm 10%, 3.3 V \pm 10% or (2.25 V to 3.63 V). Alternatively, a code of "GS" corresponds to a VHn code "G" (i.e. Vdd-1.193 V) and a VLn code "S" (e.g. Vdd-1.530 V) corresponding to a V_Swing of 0.760 V peak-peak, which may be used for a supply voltage of 3.3 V \pm 10%.

Order Code		С	D	E	F	G	н	J	К	L	м	Ν	Р	Q	R	S	Т	U	v	w	х	Y	
v_	Swin	g (V)	0.45V	0.49V	0.54V	0.59V	0.64V	0.69V	0.74V	0.79V	0.84V	0.89V	0.94V	V66.0	1.03V	1.08V	1.16V	1.23V	1.3V	1.38V	1.45V	1.53V	1.6V
	Α																			AV	AW	AX	AY
	_			Sunn	lv Volta	ge		Availa	hle Col	ors										1.94 BV	1.86 BW	1.69 BX	1.61 BY
	В			1.	8V±5%	50 (Orange	/ wana	Gr	een										1.86	1.77	1.61	1.52
	с			1.71\	/ to 3.6	3V		Ģ	Green										CU	CV	CW	СХ	СҮ
				2.5	5V±10%	(Drange	Gree	n B	lue	Purple							DT	1.94 DU	1.77 DV	1.69 DW	1.52 DX	1.44 DV
	D			3.3	3V±10%		Gre	een	В	lue	Red							1.94	1.86	1.69	1.61	1.44	1.35
	Е			2.25	/ to 3.6	3V	Gre	een		Blue	e							ET	EU	EV	EW	EX	EY
					Note /			-	Gray			ļ					ES	1.86 ET	1.77	1.61 EV	1.52 EW/	1.35 EV	1.27 EV
	F																1.94	1.77	1.69	1.52	1.44	1.27	1.18
	G																GS	GT	GU	GV	GW	GX	GY
	_															1.94	1.86	1.69	1.61	1.44	1.35	1.18	1.10
	н														1.94	1.86	1.77	1.61	1.52	1.35	1.27	1.10	1.01
																	JS	JT	JU	JV	JW	JX	JY
	-													1.94	1.86	1.77	1.69	1.52	1.44	1.27	1.18	1.01	0.93
	к												1.94	1.86	1.77	1.69	кS 1.61	1.44	1.35	кv 1.18	1.10	0.93	0.85
																	LS	LT	LU	LV	LW	LX	LY
	_											1.94	1.86	1.77	1.69	1.61	1.52	1.35	1.27	1.10	1.01	0.85	0.76
	м										1.94	1.86	1.77	1.69	1.61	1.52	IVIS 1.44	1.27	1.18	1.01	0.93	0.76	0.68
		/2									2151	2.00		2.05	NQ	NR	NS	NT	NU	NV	NW	NX	NY
	N	/ing								1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.18	1.10	0.93	0.85	0.68	0.59
VHn	Ρ	^_s							1 94	1.86	1 77	1 69	1 61	PP 1 52	PQ 1 44	PR 1 35	PS 1 27	PT 1 10	PU 1.01	PV 0.85	PW	PX 0.59	PY 0.51
		(+ u							1.54	1.00	1.77	1.05	QN	QP	QQ	QR	QS	QT	QU	QV	QW	QX	0.51
	ų	۲۲						1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.01	0.93	0.76	0.68	0.51	0.42
	R						1 0/	1 96	1 77	1 60	1 61	RM	RN	RP	RQ	RR	RS	RT	RU	RV	RW	0.42	0.24
							1.54	1.00	1.77	1.05	SL	SM	SN	SP	SQ	SR	SS	ST	SU	SV	SW	0.42	0.34
	S					1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.85	0.76	0.59	0.51	0.34	0.25
	т				1.04	1.00	4 77	1.00	1.01	TK	TL	TM	TN	TP	TQ	TR	TS	TT	TU	TV	0.42	0.05	
	\vdash				1.94	1.80	1.//	1.69	1.61 UJ	1.52 UK	1.44 UL	UM	UN_	1.18 UP_	UQ	UR_	US	UT_	UU	0.51	0.42	0.25	
	U			1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.68	0.59	0.42	0.34		
	v		1.04	1.00	4 77	1.00	1.00	VH	VJ	VK	VL	VM	VN	VP	VQ	VR	VS	VT	VU	0.20	0.35		
	\square		1.94	1.86	1.77	1.69	1.61 WG	1.52 WH	1.44 WJ	1.35 WK	1.27 WL	1.18 WM	-1.10 WN	1.01 WP	-0.93 WQ	0.85 WR	-0.76 WS_	0.59 WT	0.51	0.34	0.25		
	w		1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.51	0.42	0.25			
	x		4 77	1.00	1.01	XF	XG	XH	XJ	XK	XL	XM	XN	XP	XQ	XR	XS	0.42					
	_		1.//	1.69	1.61 YF	1.52 VF	1.44 YG	1.35 YH	1.27 YI	1.18 YK	1.10 YI	1.01 YM	0.93 VN	0.85 YP	0.76 YO	0.68 YR	0.59 YS	0.42	0.34				
	Y		1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.34	0.25				
	z			ZD	ZE	ZF	ZG	ZH	ZJ	ZK	ZL	ZM	ZN	ZP	ZQ	ZR							
	H		1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.25					
	1		1.52	1.44	1E 1. <u>35</u>	1.27	1.18	1. <u>10</u>	1.01	0.93	0.85	0.76	0.68	0.59	0. <u>51</u>	0.42	0.34						
	,		2C	2D	2E	2F	2G	2H	2J	2К	2L	2M	2N	2P									-
	Ĥ		1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	0.68	0.59	0.51	0.42	0.34	0.25						
	3		1.35	1.27	3E 1.18	1.10	1.01	0.93	0.85	3K 0.76	3L 0.68	0.59	0.51	0.42	0.34	0.25							

Table 11. FlexSwing 2-digit Codes specifying VHn and VLn referenced to voltage on GND pin

Note:

Γ

6. Please contact SiTime.

Test Circuit Diagrams

A 1.5 pF capacitive load is used at each differential output. Because of the additive input capacitance of the active probe used with the oscilloscope, the output characteristics for all signal types are measured with a total of 2 pF capacitive load.

Test Setups for LVPECL Measurements

(with Termination 2)^[9], Output Enable/Disable Time, and Startup Time

Notes:

- 7. See Figure 4 for the test setup to measure LVPECL Power Supply-Induced Phase Noise (PSPN) with filter added.
- 8. See Figure 5 for the test setup to measure LVPECL Current Consumption with Termination 1 or without Termination.

Test Circuit Diagrams (continued)

Test Setups for FlexSwing Measurements^[10]

Figure 4. Test setup to measure FlexSwing Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) with and without filter added^[11]

Figure 5. Test setup to measure FlexSwing Waveform Characteristics, Current Consumption^[12], Output Enable/Disable Time, and Startup Time

Note:

- The same test circuits are used for FlexSwing referenced to VDD and FlexSwing referenced to GND. Test setup is also used to measure LVPECL Power Supply-Induced Phase Noise (PSPN) with filter added. 9.
- 10.
- 11. Test setup is also used to measure LVPECL Current Consumption with Termination 1 or without Termination.

Test Circuit Diagrams (continued)

Test Setups for LVDS Measurements

Figure 7. Test setup to measure LVDS Waveform Characteristics, Current Consumption, Output Enable/Disable Time, and Startup Time

Test Circuit Diagrams (continued)

Test Setups for HCSL Measurements

Figure 8. Test setup to measure HCSL Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) with and without filter added

Test Circuit Diagrams (continued)

Test Setups for Low-Power HCSL Measurements

Figure 10. Test setup to measure Low-Power HCSL Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) with and without filter added

Waveform Diagrams

Figure 13. LVPECL, LVDS, HCSL, Low-Power HCSL, and FlexSwing Voltage Levels Across Differential Pair

Figure 14. LVDS Voltage Levels per Differential Pin

Waveform Diagrams (continued)

Termination Diagrams

LVPECL and FlexSwing Termination

The NeoLite-4 FlexSwing output drivers support low power without sacrificing signal integrity via simple terminations as shown in Figure 22 and Figure 24, compared to traditional LVPECL drivers. The FlexSwing and LVPECL outputs are

voltage-mode drivers. Use the table and figures below to select a termination circuit for the desired supply voltage. The table also provides LVPECL current consumption (I load) into the load termination.

Table 12. Termination Options for LVPECL and FlexSwing Signaling

Signaling	Termination Options										
Signaling	Figure 21	Figure 22	Figure 23	Figure 24	Figure 25	Figure 26					
LVPECL referenced to Vdd	OK to use I_load = 40 mA with 100 Ω near-end bias resistor	Do Not Use	OK to use I_load = 28 mA	OK to use	OK to use I_load = 28 mA	Do Not Use					
FlexSwing referenced to Vdd	OK to use		OK to use ^[13]	OK to use	OK to use	Do Not Use					
FlexSwing	OK to use ^[13]	(see Figure 22 for frequency ranges and	Do Not Use	OK to use	Do Not Use	Do Not Use					
referenced to Gnd		voltage swings)	Do Not Use	OK to use	Do Not Use	OK to use					

Figure 23. LVPECL and FlexSwing DC-coupled Load Termination with Thevenin Equivalent Network^[13]

Figure 25. LVPECL and FlexSwing with DC-coupled Parallel Shunt Load Termination

Figure 22. Recommended FlexSwing Termination when AC-coupled

Figure 24. LVPECL and FlexSwing with Y-Bias Termination

Termination Diagrams (continued)

LVDS, Supply Voltage: 1.8 V \pm 5%, 2.5 V \pm 10%, 3.3 V \pm 10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V

Figure 27. LVDS AC Termination

Figure 28. LVDS DC Termination at the Load

HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V

Figure 29. (a) HCSL Source Termination and (b) HCSL Load Termination

Low-power HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V

Figure 30. Low-power HCSL Termination

Notes:

- 12. Contact SiTime for optimum R_B values for FlexSwing options.
- 13. Contact SiTime for optimum R1 and R2 values for FlexSwing options.

Operating Temperature and Thermal Characteristics

Table 13. Operating Temperature and Thermal Characteristics

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition
Ambient Temperature	TA	-40		85	°C	Industrial Temperature Range
	TA	-40		105	°C	Extended Industrial Temperature Range
Junction Temperature	TJ			140	°C	
Thermal Resistance	θյΑ		25.50		°C/W	Still Air
Junction to Ambient			20.80		°C/W	Air Flow 1m/s
			19.60		°C/W	Air Flow 2m/s
Thermal Resistance Junction to Case	θις		8.70		°C/W	
Thermal Resistance Junction to Board	θ _{JB}		7.07		°C/W	
Thermal Resistance Junction to Top Center	ΑLΨ		0.20		°C/W	C O
Silin	2				3	

Table 14. Absolute Maximum Limits

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
V _{DD}			V
Electrostatic Discharge, HBM 100pF, 1.5kΩ	-	2000	V
Electrostatic Discharge, CDM	-	750	V
Latch up tolerance		JESD78 compliant	
Mechanical Shock Resistance, ΔF/F		10	kG
Mechanical Vibration Resistance, ΔF/F		70	G
Soldering Temperature (follow standard Pb free soldering guidelines)	-	260	ů.
Junction Temperature ^[15]	_	150	C°

Note:

14. Exceeding this temperature for extended period of time may damage the device.

Table 15. Maximum Operating Junction Temperature^[16]

Max Operating Temperature (ambient)	Maximum Operating Junction Temperature
105°C	140°C

Note:

15. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.

Table 16. Environmental Compliance

Parameter	Test Conditions
Mechanical Shock Resistance	MIL-STD-883F, Method 2002
Mechanical Vibration Resistance	MIL-STD-883F, Method 2007
Temperature Cycle	JESD22, Method A104
Solderability	MIL-STD-883F, Method 2003
Moisture Sensitivity Level	MSL3 @260°C

			.0
			<u>,</u> ,
		8,	
	a		
S			

Package Pin-Out and Description (Preliminary)

Table 17. Pin Description

			000 2 (13)			
		3 22 2	21 20 19			
CRION						
GPIOU			l			· · · · · · · · · · · · · · · · · · ·
GPIO1	2			17 CLK2N		
GPIO2	3	GROUI	ND	16 CLK2P		
GPIO3/CSB/A0	4	PAD		15 VDDO1		
			[
GPIO4/I2C1_SPI0				13 CLK1P		
	7 8	3 9 1	10 11 12			
	90000047 900047 900850047	VONO CLA	Citan Citan		, C	
F Table 17. Pin Des	igure 31. T	Гор Vie	w		6	
Pin Name	I/O Type	Pin#	Pull-up (kO)	Pull-down	Function	Comments
GPIO0	I/O	1	()	()	Programmable Input	
GPIO1	I/O	2			Programmable Input / Output	
GPIO2	I/O	3			Programmable Input / Output	
GPIO3/CSB/A0	I/O	4		*	Programmable Input / Output / SPI Chip Select / I2C A0 Address bit	
VDDA	PWR	5			Analog Power Supply	
GPIO4/I2C1_SPI0	I/O	6			Programmable Input / Output / Select between SPI or I2C	
GPIO5/SDO/A1	I/O	7	0	,	Programmable Input / Output / SPI Data Output (SDO) / I2C A1 Address bit	
GPIO6/SDAIO	I/O	8			Programmable Input / Output /	
GPIO7/SCLK	1/0	9			Programmable Input / Output /	
VDDO0	PWR	10			Supply Voltage for CLK0	
CLKON	0	11			Differential / LVCMOS Clock Output	
CLK0P	0	12			Differential / LVCMOS Clock Output	
CLK1P	0	13			Differential / LVCMOS Clock Output	
CLK1N	0	14			Differential / LVCMOS Clock Output	
VDD01	PWR	15			Supply Voltage for CLK1	
CLK2P	0	16			Differential / LVCMOS Clock Output	
CLK2N	0	17			Differential / LVCMOS Clock Output	
VDDO2	PWR	18			Supply Voltage for CLK2	
CLK3P	0	19			Differential / LVCMOS Clock Output	
CLK3N	0	20			Differential / LVCMOS Clock Output	
VDDO3	PWR	21			Supply Voltage for CLK3	
VDD	PWR	22			Digital Power Supply	
GPIO8/A0	I/O	23			Programmable Input / Output / SPI Chip Select / I2C A0 Address bit	

		SPI Chip Select / I2C A1 Addre	ess dit
		ietanyano	
5	ne		

Dimensions and Patterns

Additional Information

Table 18. Additional Information

Manufacturing Notes Qualification Reports Performance Reports	Tape & Reel dimension, reflow profile and other	
Qualification Reports Performance Reports	manufacturing related info	https://www.sitime.com/sites/default/files/gated/Manufacturing-Notes- for-SiTime-Products.pdf
Performance Reports	RoHS report, reliability reports, composition reports	http://www.sitime.com/support/quality-and-reliability
	Additional performance data such as phase noise, current consumption, and jitter for selected frequencies	http://www.sitime.com/support/performance-measurement-report
Termination Techniques	Termination design recommendations	http://www.sitime.com/support/application-notes
Layout Techniques	Layout recommendations	http://www.sitime.com/support/application-notes
ECCN #: EAR99	Five-character designation used on the Commerce Control List (CCL) to identify dual use items for export control purposes.	LC L
HTS Classification Code: 8542.39.0000	A Harmonized Tariff Schedule (HTS) code developed by the World Customs Organization to classify/define internationally traded goods.	
		and

Revision History

Table 19. Revision History

Version	Release Date	Change Summary
0.0	2-Jun-2022	Initial version
0.1	6-Jun-2022	Spec. updates and Pin out changes
0.2	9-Jun-2022	Additional clean up
0.25	13-Feb-2023	Added Output type specifications Added Dimensions drawings
0.26	28-Feb-2023	Updated Ordering Information with Freq Stability code Organized Additional Information table links
0.28	19-Jul-2023	Updated the Idd current values for all output drivers
0,30	26-Jan-2023	Updated GPIO Table, GPIO inputs configurable active high and low Updated Package Drawings, GPIO tables, pin descriptions
0.31	28-Mar-2024	Updated the PSNR Specs for each output driver
0.40	01-May-2024	Updated the DCO function, Power Up Sequence and HCSL source termination
SiTime Corn	oration 5451 Pat	
Silime Corp	oration, 5451 Pat	rick Henry Drive, Santa Clara, CA 95054, USA Phone: +1-408-328-4400 Fax: +1-408-328-4439
© SiTime Corporati	on 2022-2024. The inform	ation contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product (ii) misuse or abuse including static discharge pagest as
accident, (iii) unauth	orized modification or repa	is which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (it)

© SiTime Corporation 2022-2024. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. This product is not suitable or intended to be used in a life support application or component or to operate nuclear facilities, or in other applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.