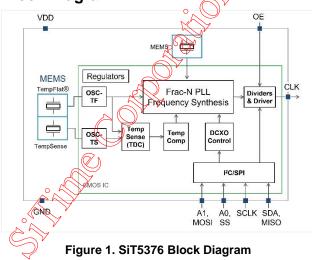
Description

The SiT5376 is a ±100 ppb precision MEMS Super-TCXO designed for the RF market, ideally suited for high-reliability wireless, telecom, microwave, satellite, radar, and GNSS applications.

The SiT5376 combines SiTime's MEMS technology with a low-noise digital PLL to deliver:

- RF-quality phase noise,
- Excellent dynamic stability in the presence of airflow and thermal excursions,
- Extreme resistance to shock and vibration.


Multiple on-chip regulators are included to filter power supply noise, eliminating the need for an external dedicated LDO.

The SiT5376 offers two device configurations for:

- 1) TCXO with non-pullable output frequency,
- DCTCXO enabling digital pulling of output frequency via an I²C/SPI interface with a resolution of 0.05 ppt (parts per trillion).

The SiT5376 can be factory programmed for frequency, stability, voltage, and pull range, eliminating long lead times and customization costs associated with quartz devices. Refer to Manufacturing Guideline for proper reflow profile and PCB cleaning recommendations.

Features

Any frequency from 10 MHz to 60 MHz (refer to SiT5377 for 60 MHz to 220 MHz)

ADVANCED

Factory programmable options for short lead time

STime

- Best dynamic stability under airflow, thermal shock
- ±100 ppb stability across temperature
- ±1 ppb/°C typical frequency stope (dF/dT)
- 1e-11 ADEV at 10 seconds averaging time
- -40°C to +105°C operating temperature
- No activity dips or micro jumps
- Resistant to shock, vibration, and board bending
- On-chip regulators eliminate the need for external LDOs
- Digital frequency pulling (DCTCXO) via I²C/SPI
 - Digital control of putput frequency and pull range
 - Up to ±400 ppm pull range
 - Frequency pull resolution down to 0.05 ppt (5e-14)
- 1.8 V to 3.3 V supply voltage
- Regulated LVCMOS or clipped sinewave output
- RoHS and REACH compliant
- Pb-free, Halogen-free, Antimony-free
- Contact SiTime for voltage control option

Applications

4G and 5G radios

- Macro and small cell base stations
- IEEE 1588 (PTP) boundary and grandmaster clocks
- RF upconverters and downconverters
- Reference for jitter cleaners driving RF signal chains
- Radar, satellite, microwave equipment
- WiFi equipment
- Cable infrastructure
- GPS, GNSS systems
- Instrumentation, test, and measurement equipment

5.0 mm x 3.5 mm Package Pinout

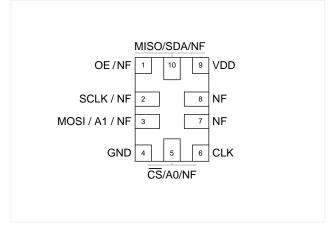
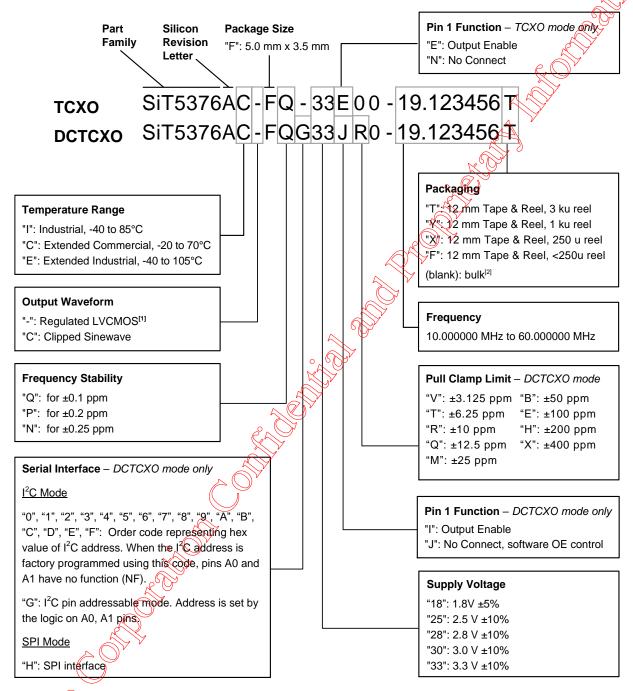



Figure 2. Pin Assignments (Top view) (Refer to Table 11 for Pin Descriptions)

Ordering Information

The part number guide illustrated below is for reference only, in which boxes identify order codes having more than one option.

Notes:

- 1. "-" corresponds to the default rise/fall time for Regulated LVCMOS output as specified in Table 1 (Electrical Characteristics). Contact SiTime for other rise/fall time options for best EMI or driving multiple loads. For differential outputs, contact SiTime.
 - 2. Bulk is available for sampling only.

0

TABLE OF CONTENTS

Description			
Features			o A
Applications			K X
Block Diagram		U	
5.0 mm x 3.5 mm Package Pinout			<i>y</i>
Ordering Information			
Electrical Characteristics			
Device Configurations and Pin-outs			
Test Circuit Diagrams for Regulated LVCM		A *	
Waveforms			
Timing Diagrams		r Or	
Stability Diagrams			
Dimensions and Patterns			
Additional Information			
Revision History			
States of the st	Contraction of the second seco		
Rev 0.23	Page 3 of 15	Proprietary & Confider http://www.s	

Electrical Characteristics

All Min and Max limits are specified over temperature and rated operating voltage with 8 pF output load unless otherwise stated. Typical values are at 25°C and 3.3 V Vdd.

Table 1. Output Characteristics

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition				
			Frequen	cy Coverag	je					
Nominal Output Frequency Range	F_nom	10	-	60	MHz	K.Y				
			Temper	ature Rang	е	$\mathcal{C}(\mathbb{O}^{V})$				
Operating Temperature Range	T_use	-20	-	+70	°C	Extended Commercial, ambient temperature				
		-40	-	+85	°C	Industrial, ambient temperature				
		-40	-	+105	°C	Extended Industrial, ambient temperature				
Frequency Stability – Stratum 3+ Grade										
Frequency Stability over Temperature	F_stab	-	_	±0.1	ppm	Referenced to (max frequency + min frequency)/2 over the rated temperature ange, in TCXO or DCTCXO Contact SiTime tor +50 ppb frequency stability over temperature				
Initial Tolerance	F_init	-	-	±0.3	ppm	Initial frequency at 25°C at 48 hours after 2 reflows				
Supply Voltage Sensitivity	F_Vdd	-	±2.5	-	ppb	Vdd ±5%				
Output Load Sensitivity	F_load	-	±0.4	-	ppb	Regulated LVCMOS output, 8 pF ±10%. Clipped sinewave output, 10 kg 10 pF ±10%				
Frequency vs. Temperature Slope	dF/dT	-	±0.9	-	ppb/°C	1°C/min temperature ramp rate				
Dynamic Frequency Change during Temperature Ramp	F_dynamic	-	±0.015	-	ppb/s	•C/min temperature ramp rate				
24-hour holdover stability	F_24_Hold	-	Ι	±0.15	pp	Inclusive of frequency variation due to temperature, $\pm 10\%$ supply variation, ± 0.8 pF load variation and 24-hour aging				
Hysteresis Over Temperature	F_hys	-	±10	- (ppb	1°C/min ramp rate, defined as $\pm dF/2$ as shown in Figure 16				
One-Day Aging	F_1d	-	±0.25	A	ppb	At 50°C, after 30-days of continued operation. Aging is measured with respect to day 31				
One-Year Aging	F_1y	-	±40	0, D.	ppb	At 50°C, after 2-days of continued operation. Aging is				
10-Year Aging	F_10y	-	±50	±500	ppb	measured with respect to day 3				
20-Year Aging	F_20y	-	±70 📈	- 🛇	ppb					
Allan deviation	ADEV	-	Ae-1	-	-	10 second averaging time ^[3]				
	•	Frequ	ency Stabi	lity - Stratu	ım 3 Grad	e				
Frequency Stability over	F_stab	- 🤇	K S	±0.2	ppm	Referenced to (max frequency + min frequency)/2 over the				
Temperature) -	±0.25	ppm	rated temperature range.				
Initial Tolerance	F_init		-	±1	ppm	Initial frequency at 25°C at 48 hours after 2 reflows				
Supply Voltage Sensitivity	F_Vdd	\bigcirc	±2.5	-	ppb	Vdd ±5%				
Output Load Sensitivity	F_load		±0.4	-	ppb	Regulated LVCMOS output, 8 pF \pm 10%. Clipped sinewave output, 10 kΩ 10 pF \pm 10%				
Frequency vs. Temperature Slope	dF/dT/	- <	±6.4	±10	ppb/°C	1°C/min temperature ramp rate				
Dynamic Frequency Change during Temperature Ramp	F _e dynamic	-	±0.11	-	ppb/s	1°C/min temperature ramp rate				
24-hour holdover stability	F 24 Hold	-	-	±0.28	ppm	Inclusive of frequency variation due to temperature, $\pm 10\%$ supply variation, ± 0.8 pF load variation and 24-hour aging				
One-Day Aging	F_1d	-	±3	-	ppb	At 50°C, after 30-days of continued operation. Aging is measured with respect to day 31				
One-Year Aging	F_1y	-	±1	-	ppm	At 50°C, after 2-days of continued operation. Aging is				
10-Year Aging	F_10y	_	±1.5	_	ppm	measured with respect to day 3				
20-Year Aging	F_20y	-	±2	-	ppm					
20-Year Total Stability	F_tot_20y	-	-	±4.6	ppm	Complies with Stratum 3 per GR-1244-CORE. Actual performance is better				

Table 1. Output Characteristics (continued)

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition
		Regulate	d LVCMOS	S Output Cl	haracteris	tics °
Duty Cycle	DC	45	-	55	%	
Rise/Fall Time	Tr, Tf	0.5	1.2	2	ns	20% to 80% Vdd
Output Voltage High	VOH	90%	_	-	Vdd	IOH = +3 mA
Output Voltage Low	VOL	_	_	4%	Vdd	IOL = -3 mA
Output Impedance	Z_out_c	_	20	-	Ohms	Impedance looking into output buffer Vod = 3.3 V
		-	20	-	Ohms	Impedance looking into output buffer, Ved = 2.5 V
		-	20	-	Ohms	Impedance looking into output butter, Vdd = 1.8 V
		Clipped	Sinewave	Output Ch	aracterist	ics
Output Voltage Swing	V_out	0.8	-	1.2	V	Clipped sinewave output 0 k0 10 pF ±10%
Rise/Fall Time	Tr, Tf	15%	-	25%	1/F_nom	20% to 80% Vdd
			Start-up	Characteris	stics	
Start-up Time	T_start	-	5	-	ms	Time to first pulse, measured from the time Vdd reaches 90% of its final value. Vdd ramp time = 100 µs from 0 V to Vdd
Output Enable Time	T_oe	-	600	-	ns	F_nom = AD MHz
Time to Rated Frequency Stability	T_stability	-	10	-	ms	Time to first accurate pulse within rated stability, measured from the time Vdd reaches 90% of its final value. Vdd ramp time = 100 μ s
			OE Disabl	e Characte	ristics 🧷	
Time to Disable from OE Pin	T_od	-	600	-	ns	

Note:

3. Measured 2 hours after startup in a temperature chamber with a constant temperature in still air.

Table 2. DC Characteristics

				~	$(\bigcirc$	
Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition
			Supp	Ry Voltage		
Supply Voltage	Vdd	1.71	1.8	1,89	V	Contact SiTime for 2.25 V to 3.63 V continuous range
		2.25	2.5	2.75	V	
		2.52	~2.8	3.08	V	
		2.70	3.0	3.30	V	
		2.97	8.3	3.63	V	
			Current C	onsumptio	on	1
Current Consumption	Idd	$> \bigcirc$	80	-	mA	F_nom = 19.2 MHz, No Load, TCXO and DCTCXO mode
OE Disable Current	I_od		78	-	mA	OE = GND, output weakly pulled down. TCXO, DCTCXO
STATIC CARD						
Rev 0.23						

Table 3. Input and Interface Characteristics

	Symbol	Min.	Тур.	Max.	Unit	Condition
	1	1	nput Chara	cteristics -	1	• ~ 🔾
Input Impedance	Z_in	75	-	-	kΩ	Internal pull up to Vdd
Input High Voltage	VIH	70%	-	_	Vdd	
Input Low Voltage	VIL	-	-	30%	Vdd	
		Frequency	/ Tuning Ra	inge – I ² C (остсхо)	modes
Pull Range	PR	±400	-	-	ppm	DCTCXO mode
Absolute Pull Range ^[4]	APR	±399.53	-	-	ppm	±0.1 ppm F_stab, DCTCXO for R + ±400 ppm
		±399.43	-	-	ppm	±0.2 ppm F_stab, DCTCXO for PR = ±400 ppm
		±399.38	-	-	ppm	±0.25 ppm F_stab, DCTCXQ for PR = ±400 ppm
Frequency Pull Clamp Limit ^[5]	PC_L	±3.125, ±	6.25, ±10, ±	12.5, ±25,		DCTCXO mode
	FC_L		±100, ±200,		ppm	
		I ² C Inter	face Chara	cteristics, I	OCTCXO I	
Bus Speed	F_I2C		≤ 1000		kHz	SDA capacitance <20 pF
			≤ 400			SDA capacitance <50pF
			≤ 100			SDA capacitance 165 pF
Input Voltage Low	VIL_I2C	-	-	30%	Vdd	\mathcal{L}
Input Voltage High	VIH_I2C	70%	-	_	Vdd	
Output Voltage Low	VOL_I2C	-	-	10%	Vdd	
Output Voltage High	VOH_I2C	90%	_	_	Vdd	
Input Leakage current	I_I2CL	0.5	_	24	μA	$0.1 V_{DD}$ < VOUT < 0.9 V_DD. Includes typical leakage curren
						from 200 k Ω pull resister to VDD.
Input Capacitance	C_I2C _{IN}	_	5	-	PF	
Aggregate Pull-Up Impedance	Z _{PU}	5	_	_	KQ,	
		SPI Inter	face Charac	cteristics, K	TCXO n	node
Bus Speed	F_SPI		≤5000	A	₩ _{kHz}	MISO capacitance < 15 pF
			≤1000		kHz	MISO capacitance < 50 pF
Input Voltage Low	VIL_SPI	_	_	A08	Vdd	
Input Voltage High	VIH_SPI	90%		K)Z	Vdd	
Output Voltage Low	VOL_SPI	-		10%	Vdd Vdd	IOL = 2.7 mA (Vdd = 2.5V)
Output Voltage High	VOL_ON	90%	$\wedge (\mathcal{O})$	-	Vdd Vdd	IOL = 2.1 mA (Vdd = 2.5V) IOH = 2.2 mA (Vdd = 2.5V)
Input Capacitance	C_SPI	5070	0.57		pF	
Leakage in High Impedance Mode	I_SPI⊾	0.5		24	μΑ	0.1 V _{DD} < VOUT < 0.9 V _{DD} .
 lotes: 4. APR = PR – initial tolerance – 20 5. Clamp limit is specified at time of 						offind value
ST THE		,				

Table 4. Jitter & Phase Noise – Regulated LVCMOS

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition					
				Jitter		. 01					
RMS Phase Jitter (random)	T_phj	-	100	-	fs	F_nom = 19.2 MHz, Integration bandwidth = 12 kt2 to 5 MHz					
RMS Period Jitter	T_jitt_per	I	1	-	ps	F_nom = 19.2 MHz, measured per JESD65B					
Peak Cycle-to-Cycle Jitter	T_jitt_cc	I	6	-	ps	F_nom = 19.2 MHz, measured per JESD65B					
	Phase Noise										
1 Hz offset		I	-84	-	dBc/Hz	$e_{a} \bigcirc^{V}$					
10 Hz offset		-	-113	-	dBc/Hz						
100 Hz offset		-	-135	-	dBc/Hz						
1 kHz offset		-	-145	-	dBc/Hz	F_nom = 19.2 MHz					
10 kHz offset		-	-159	-	dBc/Hz	TCXO and DCTCXO modes					
100 kHz offset		-	-170	-	dBc/Hz						
1 MHz offset		-	-171	-	dBc/Hz						
5 MHz offset		-	-172	-	dBc/Hz						
Spurious	T_spur	-	-105	-	dBc	F_nom = 19.2 MHz, 1 kHz to 5 MHz offsets, 8 pF ±10%					
		F	Power Supp	oly Noise In	nmunity						
Power Supply-Induced Jitter Sensitivity ^[6]	PSJS	-	0.2	-	ps/mV	Power supply ripple from 1 kHz to 20 MHz					
Power Supply-Induced Phase Noise	PSPN	-	-70	-	dBc	19,2 MHz, 50 mV peak-peak ripple on VDD					

Note:

6. Terminology chosen for clarity; referred to historically as power-supply noise rejection (PSNR)

Table 5. Jitter & Phase Noise – Clipped Sinewave

Parameters					\sim	
	Symbol	Min.	Тур.	Max.	(uny	Condition
				Jitter (D ^v	
RMS Phase Jitter (random)	T_phj	-	100	-	fs	F_nom = 19.2 MHz, Integration bandwidth = 12 kHz to 5 M
			Pha	ase Noise		
1 Hz offset		-	-84		dBc/Hz	
10 Hz offset		-	-113		dBc/Hz	
100 Hz offset		-	-135	× -	dBc/Hz	
1 kHz offset		-		-	dBc/Hz	F_nom = 19.2 MHz
10 kHz offset		- 6	~-159	-	dBc/Hz	TCXO and DCTCXO modes
100 kHz offset		- >	-167	-	dBc/Hz	
1 MHz offset		- 40	-168	-	dBc/Hz	
5 MHz offset		$ \square $	-169	-	dBc/Hz	
Spurious	T_spur)_	-105	-	dBc	F_nom = 19.2 MHz, 1 kHz to 5 MHz offsets, 10 pF \pm 10%
		💛 р	ower Supp	ly Noise Im	munity	
Power Supply-Induced Jitter Sensitivity ^[6]	PSJS		0.1	-	ps/mV	Power supply ripple from 1 kHz to 20 MHz
Power Supply-Induced Phase Noise	PSRN	-	-80	-	dBc	19.2 MHz, 50 mV peak-peak ripple on VDD
Power Supply-Induced Phase Noise	\searrow					

ADVANCED SiT5376 10 MHz – 60 MHz, ±0.1 to ±0.25 ppm, Elite RF™ Precision Super-TCXO

Table 6. Absolute Maximum Limits

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Test Conditions	Value	UNK
Storage Temperature		-65 to 150	
Continuous Power Supply Voltage Range (Vdd)		-0.5 to 4	
Human Body Model (HBM) ESD Protection	JESD22-A114	2000	V
Soldering Temperature (follow standard Pb-free soldering guidelines)		260	0° °C
Junction Temperature ^[7]		130	°C
Input Voltage, Maximum	Any input pin	Vdd + 0.3	v
Input Voltage, Minimum	Any input pin	-0.3	V

Note:

7. Exceeding this temperature for an extended period of time may damage the device.

Table 7. Thermal Considerations^[8]

Package	(W\ 3 , ^[9] (°C/W)	4°	X	θ _{JC} , Bottom (°C/W)
Ceramic 5.0 mm x 3.5 mm	TBD	<pre>X</pre>	$\overline{\gamma}$	TBD

Notes:

8. Measured in still air. Refer to JESD51 for θ_{JA} and θ_{JC} definitions.

9. Devices soldered on a JESD51 2s2p compliant board.

Table 8. Maximum Operating Junction Temperature^[10]

Max Operating Temperature (ambient)	(Maximum Operating Junction Temperature
70°C		85°C
85°C	, P	100°C
105°C		120°C
Note:	° Dr	

Note:

10. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.

Table 9. Environmental Compliance

Parameter	Conditions	Value	Unit
Mechanical Shock Resistance	MIL-STD 883F, Wethod 2002	10000	g
Mechanical Vibration Resistance	MIL-STD-8835, Method 2007	70	g
Temperature Cycle	JESD22, Method A104	-	-
Solderability	MHL-STD-883F, Method 2003	-	-
Moisture Sensitivity Level	MSL7 @260°C	-	-

Device Configurations and Pin-outs

Table 10. Device Configurations

	se eenig	anationio				\circ $($ $))$
Configuration	Pin 1	Pin 2	Pin 3	Pin 5	Pin 10	I ² C and SPI Programmable Parameters
тсхо	OE / NF	NF	NF	NF	NF	-
DCTCXO	OE / NF	SCLK	A1	A0	SDA	I2C: Frequency Pull Range, Frequency Pull Value, Output Enable control
DCTCXO	OE / NF	SCLK	MOSI	<u>CS</u> / NF	MISO	SPI: Frequency Pull Range, Frequency Pull Value, Output Enable control

Pin-outs (Top View)

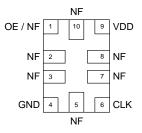
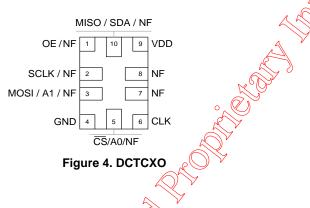
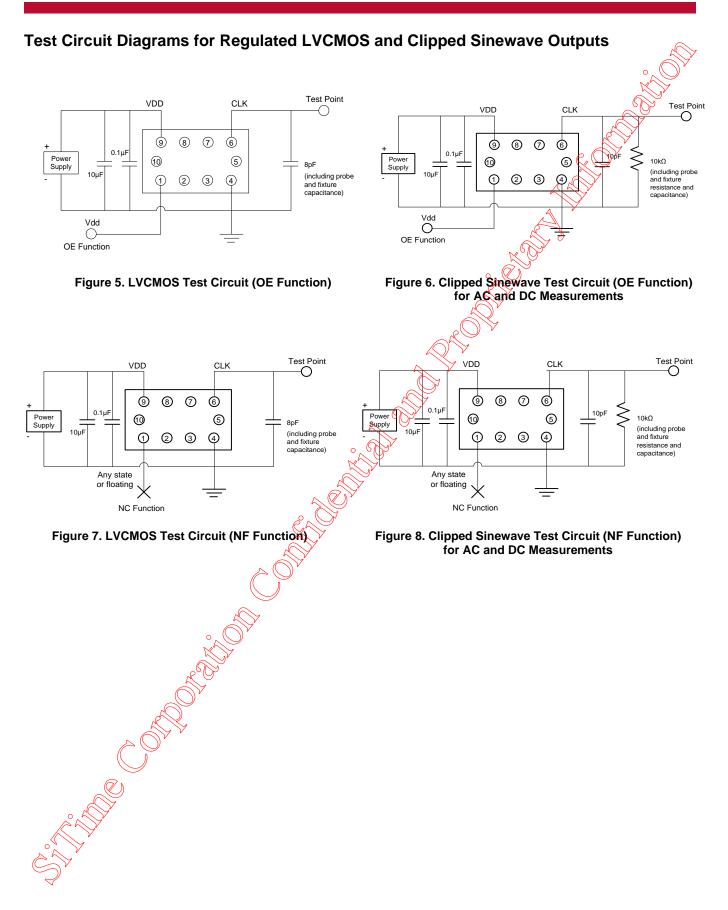



Figure 3. TCXO

Table 11. Pin Description

Pin	Symbol	I/O	Internal Pull-up/Pull Down Resistor	Function
1	OE / NF ^[13]	OE – Input	100 kΩ Pull-Up	H ^[11] : specified frequency output Loutput is high impedance. Only output driver is disabled
		NF ^[13] – No Function	- 20	H or L or Open: No effect on output frequency or other device functions
2	SCLK / NF ^[13]	SCLK – Input	200 kΩ Pull-Up	I ² C/SPI serial clock input
		NF – No Function	r Øy	H or L or Open: No effect on output frequency or other device functions
3	MOSI / A1 / NF ^[13]	MOSI – Input	100 kΩ Pul/Up	SPI serial data input
		A1 – Input	100 kΩ Pull-Up	I ² C address, most significant bit (MSB), when address is selected via pins.
		NF – No Function	-	H or L or Open: No effect on output frequency or other device functions
4	GND	Power	» 🔘 " –	Connect to ground ^[14]
	<u>CS</u> / A0 / NF ^[13]	$\overline{\text{CS}}$ – SPI Chip Select	100 kΩ Pull-Up	SPI Chip select, active low
5		A0 – Input	100 kΩ Pull-Up	$\rm I^2C$ address, least significant bit (LSB), when address is selected via pins. This pin is NF when $\rm I^2C$ device address is specified in the ordering code. $\overline{\rm CS}$ is SPI chip select, active low
		NF - No Function	-	H or L or Open: No effect on output frequency or other device functions.
6	CLK	Output	-	Regulated LVCMOS, or clipped sinewave oscillator output
7	NF ^[13]	NF-No Function	-	H or L or Open: No effect on output frequency or other device functions.
8	NF ^[13]	NF – No Function	-	H or L or Open: No effect on output frequency or other device functions.
9	VDD	Power	-	Connect to power supply ^[12]
10	MISO / SDA / NEt3	MISO – Output	_	SPI serial data output
		SDA – Input/Output	200 kΩ Pull Up	I ² C Serial Data
		NF – No Function	_	H or L or Open: No effect on output frequency or other device functions

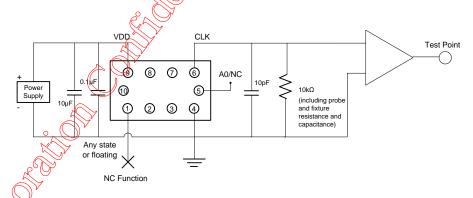
Notes:

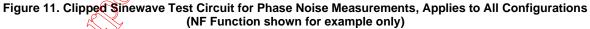

11. In OE mode for noisy environments, a pull-up resistor of 10 kΩ or less is recommended if pin 1 is not externally driven. If pin 1 needs to be left floating, use the NF option.

12² Å 0. 1μF capacitor in parallel with a 10 μF capacitor are required between VDD and GND. The 0.1 μF capacitor is recommended to place close to the device,

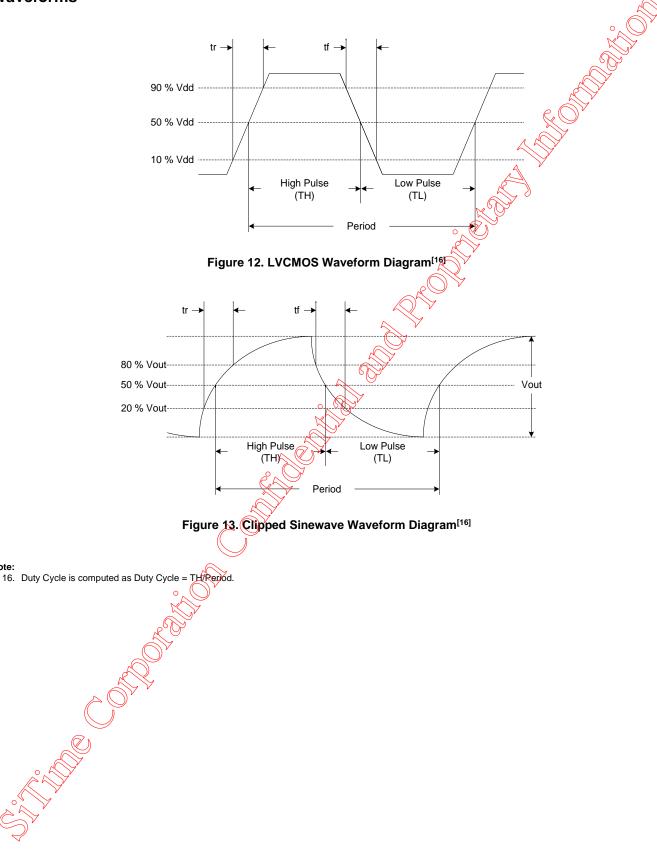
13. All NF pins can be left floating and do not need to be soldered down.

14. Vias from the GND pins to the GND plane should be maximized.

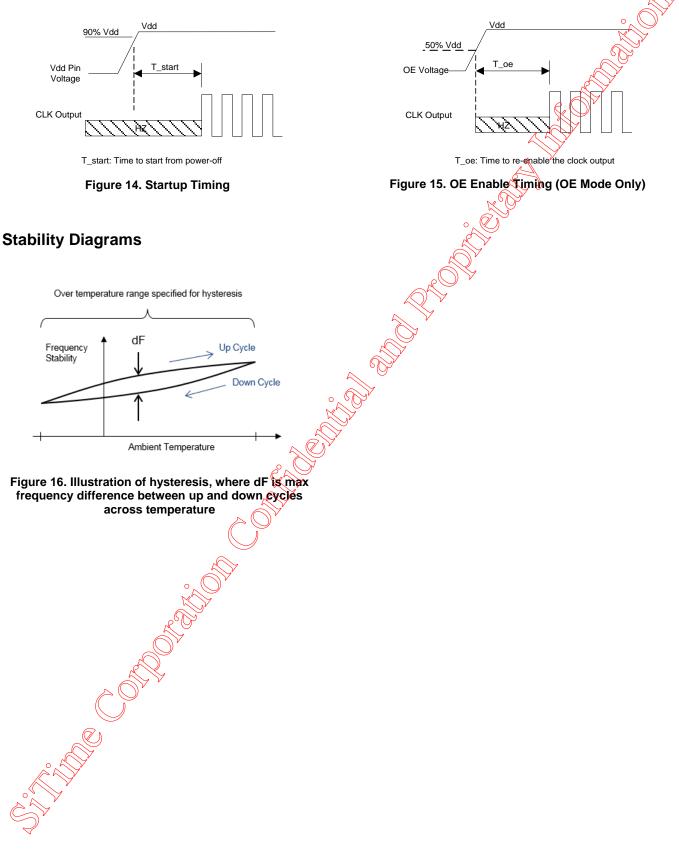




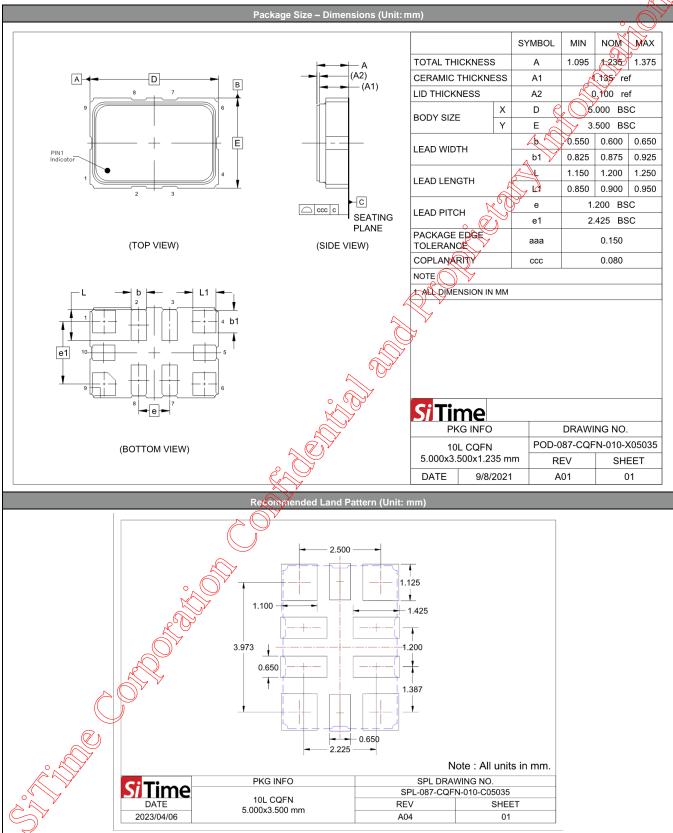
Test Circuit Diagrams for Regulated LVCMOS and Clipped Sinewave Outputs (continued) Test Point VDD CLK О ģ 8 \overline{O} 6 A0/NC 0.1µ 1 Power 1 6 8pF Supply (including probe and fixture 10µF 1 2 3 4 SDA[15] capacitance) Any state or floating SCLK NC Function Figure 9. LVCMOS Test Circuit (I²C Control), DCTCXO mode for AC and DC Measurements Fest Point VDD CLK Ø 6 A0/NC 9 \overline{O} 8 0.1µl Power Supply 10 10kΩ 6 (including probe 10µF 1 2 4 and fixture resistance and capacitance) 3 SDA[15] Any state or floating X SCLK Function



Note: 15. SDA is open-drain and may require pull-up resistor if not present in I²C test setup.


Waveforms

Note:



Timing Diagrams

Dimensions and Patterns

Additional Information

Table 12. Additional Information

Table 12. Additional Info		
Document	Description	Download Link
ECCN #: EAR99	Five character designation used on the commerce Control List (CCL) to identify dual use items for export control purposes.	-
HTS Classification Code: 8542.39.0000	A Harmonized Tariff Schedule (HTS) code developed by the World Customs Organization to classify/define internationally traded goods.	
Manufacturing Notes	Tape & Reel dimension, reflow profile and other manufacturing related info	https://www.sitime.com/support/resource-libfast-manufacturing-notes- sitime-products
Qualification Reports	RoHS report, reliability reports, composition reports	http://www.sitime.com/support/quality-and veliability
Termination Techniques	Termination design recommendations	http://www.sitime.com/support/appleation-notes
Layout Techniques	Layout recommendations	http://www.sitime.com/support sout atton-notes

Revision History

Table 13. Revision History

Version	Release Date	Change Summary		
0.1	17-Jun-2020	First release, advanced information		
0.11	12-Jul-2020	Revised phase noise		
0.12	16-Sep-2020	Revised phase noise		
0.13	12-Dec-2020	Revised phase noise		
0.14	24-Jun-2021	Updated images in dimensions and patterns		
0.15	8-Sep-2021	Updated package image in dimensions and patterne		
0.16	29-Dec-2021	Updated jitter for both LVCMOS and Clipped Size waveforms Updated current consumption Updated block diagram		
0.20	16-Nov-2022	Added "F" packaging option Revised default output load to 8 pF for LVCMOS output Revised F_Vdd and F_load specifications Revised condition for Tr,Tf specification Revised VOL specification Added Note 14		
0.21	6-Dec-2022	Revised Sapphire product name to Elite RF™		
0.22	20-Apr-2023	Revised LVCMOS output type to "Regulated LVCMOS" from "LVCMOS" Revised VOL spec to a maximum of 4% Added SPI Interface Characteristics Improved land pattern - no dimensions were changed		
0.23	6-Jun-23	Updated output frequency range – 10 to 60 MHz Updated F_I2C and Zpu specifications		

SiTime Corporation, 545 (Patrick Henry Drive, Santa Clara, CA 95054, USA | Phone: +1-408-328-4400 | Fax: +1-408-328-4439

© SiTime Corporation 2020-2022 The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized (nodification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, harddling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory of otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. Products sold by SiTime are not spitiable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. All gales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

STITIME owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.