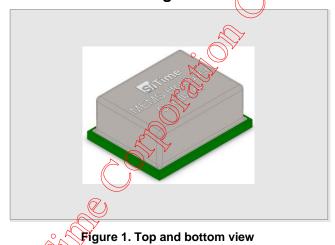
ADVANCED

Description

The SiT5812 is the industry's smallest OCXO (9 mm x 7 mm) to offer $\pm 1 \text{ ppb}$ over-temp stability, $\pm 0.01 \text{ ppb/°C}$ typical frequency slope (dF/dT), and up to 8 hours of time holdover. It is the first OCXO to offer $\pm 1 \text{ ppb}$ stability over a temperature range as wide as $-40 \,^{\circ}\text{C}$ to 95°C. Leveraging SiTime's unique temperature sensing technology and advanced CMOS design, it delivers excellent stability in the presence of environmental stressors — airflow, temperature perturbation, vibration, shock, and electromagnetic interference (EMI).


The unique modular construction of SiT5812 enables an unmatched combination of class leading stability over temperature, phase noise, programmability, and temperature range all in a compact package. SiT5812 is designed for the best environmental resilience, delivering a precise time reference in the presence of airflow, temperature perturbation, vibration, shock, and electromagnetic interference (EMI).

The SiT5812's environmental robustness enables unmatched ease-of-use and reduces system manufacturing overhead:

- Highly flexible placement on the PCB
- Minimal shielding for thermal isolation

SiT5812 can be factory-programmed to any frequency between 60 MHz and 220 MHz.

9 mm x 7 mm Package

Features

- Any frequency between 60 MHz and 220 MHz
- ±1 ppb frequency stability over temperature.
- ±0.01 ppb/°C frequency slope typical dF/dT
- Up to 95°C operating temperature range
- Up to 8 hours of holdover over 1.5 us
- 460 mW power consumption steady state
- 5E-12 ADEV at 10 second averaging time
- 2.5, 2.8, and 3.3 V supply voltages
- Digital frequency pulling (DCOCXO) via I²C/SPI
 - Up to ±400 ppm putl range
 - Frequency pull resolution down to 0.05 ppt (5e-14)
- Exceptional dynamic stability under airflow and rapid temperature changes
- Integrated regulators for on-chip power-supply noise filtering and excellent PSNR
- Resistant to shock and vibration
- Contact SiTime for temperature range up to 105°C

Applications

- 4G/5G access and core networks
 5G distribution units and 4G base stations
- Network switches and routers
- Hyperscale and edge datacenters
- Passive optical networks
- Time holdover and IEEE 1588 synchronization
- Time and Frequency Measurement

Package Pinout

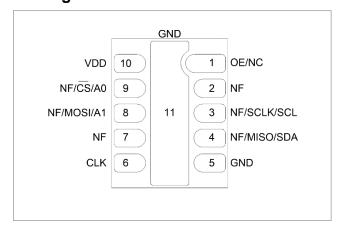
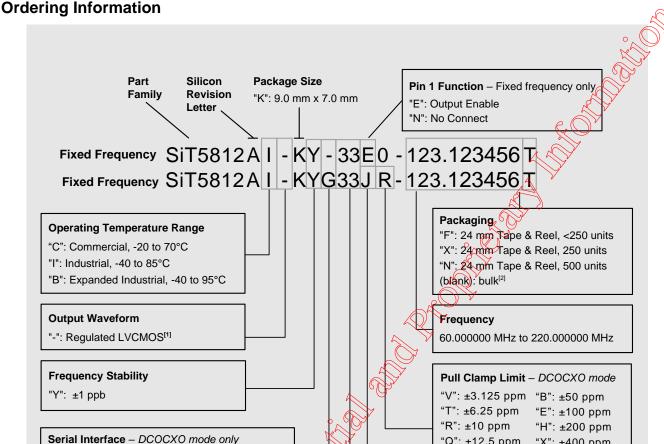



Figure 2. Pin Assignments (Bottom view)

I²C Mode

I C IVIOGE

"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F": Order code representing hex value of I²C address. When the I²C address is factory programmed using this code, pins Adam A1 have no function (NF).

"G": I²C pin addressable mode. Address is set by the logic on A0, A1 pins.

SPI Mode

"H": SPI interface

"Q": ±12.5 ppm "X": ±400 ppm "M": ±25 ppm

Pin 1 Function - DCOCXO mode only

"I": Output Enable

"J": No Connect, software OE control

Supply Voltage

"25": 2.5 V ±2.5% "28": 2.8 V ±5% "33": 3.3 V ±5%

Notes:

- 1. "-" corresponds to the default rise/fall time for regulated LVCMOS output as specified in Table 2 (Output Characteristics). Contact SiTime for other rise/fall time options for best EMI.
- 2. Bulk is available for sampling only.

Table 1. Ordering Codes for Supported Tape & Reel Packaging Method^[3]

o Device Size	24 mm T&R (<250 units)	24 mm T&R (250 units)	24 mm T&R (500 units)
9 mm x 7 mm	F	X	N

Notes:

3 10 unit minimum order quantity for tape and reel packaging.

Electrical Characteristics

All Min and Max limits are specified over temperature and rated operating voltage. Typical values are at 25°C and 3.3 V VDD. All measurements are specified with 8 pF load unless otherwise stated.

Table 2. Output Characteristics

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition	
	,			ncy Covera	ge		
Nominal Output Frequency Range	F_nom	60	_	220	MHz		
Temperature Range			ge				
Operating Temperature Range	T_oper	-20		+70	°C	Commercial, ambient temperature	
		-40	_	+85	°C	Industrial, ambient temperature	
		-40	-	+95	°C	Expanded industrial, ambient temperature	
			Freque	ency Stabil	ity		
Frequency Stability over Temperature	F_stab	-	-	±1	ppb	Over either operating temperature range (T_oper); referenced to (max frequency + min frequency)/2 over the temperature range	
Initial Tolerance	F_init	-	±0.1	-	ppm	Initial frequency at 25°C at 48 hours after 2 reflows	
Supply Voltage Sensitivity	F_VDD	-	±0.1	_	ppb	Over operating temperature range (T_oper); VDD ±5%	
Output Load Sensitivity	F_load	-	±0.01	_	ppb	Over operating temperature (T_oper); Regulated LVCMOS output, 8 pt +10%.	
Frequency vs. Temperature Slope	ΔF/ΔΤ	-	±0.01	-	ppb/°C	0.5°C/min temperature ramp rate, -40 to 95°C	
Dynamic Frequency Change during Temperature Ramp	F_dynamic	-	±0.08	-	ppt/s	0/5°C/min temperature ramp rate, -40 to 95°C	
Hysteresis Over Temperature Contact SiTime for lower hysteresis	F_hys	-	±0.2	-	ppo	₇ 0.5°C/min temperature ramp rate, -40 to 95°C	
One-Day Aging	F_1d	-	±0.2	- (ppb	At 50°C, after 10-days of continued operation. Aging is measured with respect to day 11	
		1	±0.1		ppb	At 50°C, after 30-days of continued operation. Aging is measured with respect to day 31	
One-Year Aging	F_1y	ı	±30		ppb	At 50°C, after 2-days of continued operation. Aging is	
20-Year Aging	F_20y	ı	±80		ppb	measured with respect to day 3	
		Regulate	d LVCMOS	Output Cl	naracteris	tics	
Duty Cycle	DC	45		55	%		
Rise/Fall Time	Tr, Tf	- &	2.4	-	ns	20% - 80% VDD	
Output Voltage High	VOH	90	7	-	%	IOH = +3 mA, relative to VDD	
Output Voltage Low	VOL	- (y -	4	%	IOL = -3 mA, relative to VDD	
	1		Start-up (Characteris	tics		
Start-up Time	T_start		8	-	ms	Time to first pulse, measured from the time VDD reaches 95% of its final value. VDD ramp time is 100 μ s, 0 V to VDD	
Time to Frequency Stability	T_stability	~ 7	60	-	s	Time to within rated stability of final frequency. Final frequency measured at one hour. Device powered on for 48 hours then powered off for 1 hour prior to measurement.	
, de		-	100	_	ms	Time to within ±100 ppb of final frequency. Final frequency measured at one hour. Device powered on for 48 hours then powered off for 1 hour prior to measurement.	

Table 3. DC Characteristics

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition				
	Supply Voltage °									
Supply Voltage	VDD	3.14	3.3	3.47	V	Contact SiTime for other voltage options				
		2.66	2.8	2.94						
		2.44	2.5	2.56						
			Power Cor	nsumption						
Power Consumption – Warm Up	Pwr_warmup	-	790	-	mW	F = 100 MHz, 3.3 V, No load, -40%				
Power Consumption – Steady State	Pwr_steady	ı	460	_		F = 100 MHz, 3.3 V, No load, 60°C				

Table 4. Input Characteristics

Table 4. Input Characteristics										
Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition				
Input Characteristics – OE Pin										
Input Impedance	Z_in	75	-	2500	kΩ	Internal pull up to VDD				
Input High Voltage	VIH	80	-	-	%	K. Q.				
Input Low Voltage	VIL	-	-	20	%					
Frequency Tuning Range – I ² C, DCOCXO mode										
Pull Range	PR	±400	-	-	ppm	DCOCXO mode				
Absolute Pull Range ^[4]	APR	±399.82	-	-	ppm	PR = ±400 ppm				
Frequency Pull Clamp Limit ^[5]	PC_L		6.25, ±10, ± ±100, ±200,		ppm	DCOCXO mode				
	l l	2C Interfac	e Characte	eristics, DC	OCXO mod	le^V				
Bus Speed	F_I2C		≤ 1000		kHz V	SDA capacitance <20 pF				
			≤ 400			SDA capacitance <50pF				
			≤ 100	4	\bigcirc	SDA capacitance <165 pF				
Input Voltage Low	VIL_I2C	_	-	30%	y ∨DD					
Input Voltage High	VIH_I2C	70%	-	1	VDD					
Output Voltage Low	VOL_I2C	-	- 0	(10%)	VDD					
Output Voltage High	VOH_I2C	90%	- 14	\ <u>\</u>	VDD					
Input Leakage current	lι	0.5	-0	∀ ″ 24	μA	0.1 VDD< VOUT < 0.9 VDD. Includes typical leakage current from 200 k Ω pull resister to VDD.				
Input Capacitance	Cin	-	(E)V	-	pF					
Aggregate Pull-Up Impedance	Z _{PU}	5 0	○ ≠	-	kΩ					
		SPI Interfac	e Characte	eristics, DC	OCXO mod	le				
Bus Speed	F_SPI		7 ≤ 5000		kHz	MISO capacitance <15 pF				
		\sim	≤ 1000		kHz	MISO capacitance <50 pF				
Input Voltage Low	VIL_SPI	<i>,</i>	-	10%	Vdd					
Input Voltage High	VIH_SPI	90%	-	_	Vdd					
Output Voltage Low	VOL_SPI		-	10%	Vdd	IOL = 2.7 mA (Vdd = 2.5V)				
Output Voltage High	VOH SPI	90%	-	-	Vdd	IOH = 2.2 mA (Vdd = 2.5V)				
Input Capacitance	o C SPIN		5		pF					
Leakage in High Impedance Mode	V 1_9PI∟	0.5	_	24	μΑ	0.1 V _{DD} < VOUT < 0.9 V _{DD} .				

Notes:

- 4. APR = PR initial tolerance 20-year aging frequency stability over temperature.
- 5. Clamp limit is specified at the time of order, which prevents pulling the frequency beyond the specified value.

Table 5. Allan Deviation and Phase Noise

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition					
Allan Deviation O. (1)											
$ au = 1 \ second$	AD_1s	-	5E-12	_							
$ au = 10 \ seconds$	AD_10s	-	5E-12	_							
$\tau = 100 \ seconds$	AD_100s	-	5E-12	_							
	Phase Noise										
1 Hz offset		-	-72	-	dBc/Hz						
10 Hz offset		-	-99	-	dBc/Hz	C O '					
100 Hz offset		-	-117	-	dBc/Hz						
1 kHz offset		-	-129	-	dBc/Hz	F = 100 MHz					
10 kHz offset		-	-143	-	dBc/Hz	7 F = 100 WHZ					
100 kHz offset		-	-153	-	dBc/Hz						
1 MHz offset		-	-154	-	dBc/Hz						
5 MHz offset		-	-157	-	dBc/Hz						

Pin-out Bottom View

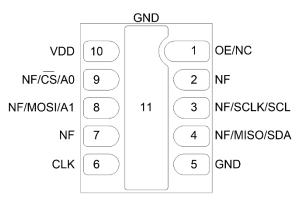


Figure 3. Size 9 mm x 7 mm

Table 6. Pin Assignments

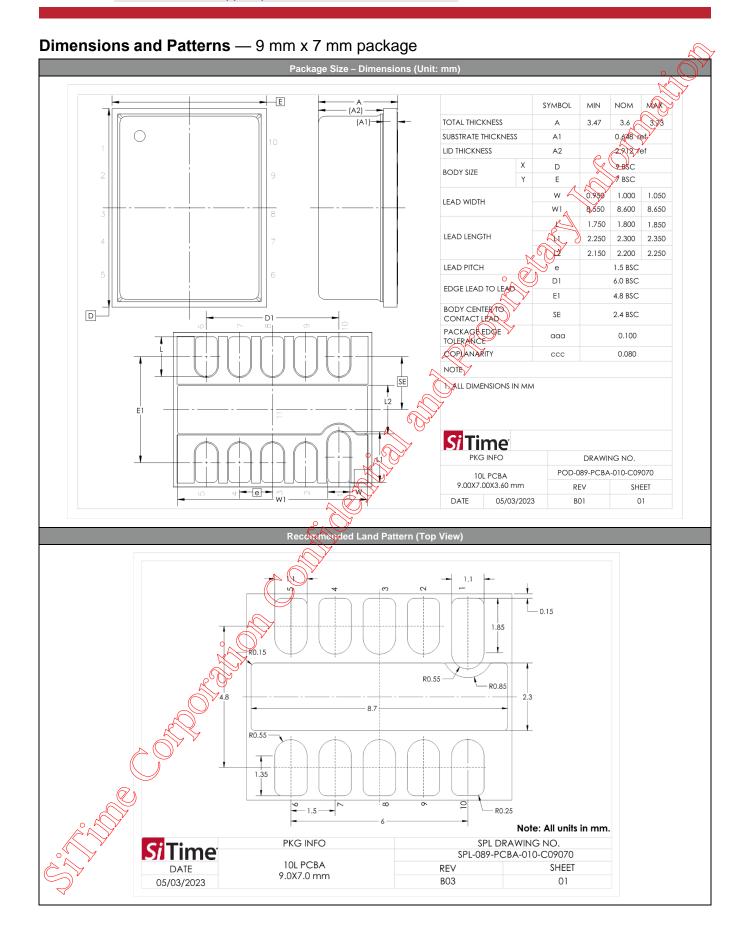
Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7		Pin 9	Pin 10	Pin 11
OE/NC	NF	NF/SCLK/SCL	NF/MISO/SDA	GND	CLK	NF	NF/MOSI/A1	NF/CS/A0	VDD	GND

Table 7. Pin Description

Symbol	I/O	Internal Pull-up Resistor	Function
OE	OE - Input	100 kΩ Pull-Up	H ^[7] : specified frequency output L: output is high impedance. Only output driver is disabled.
NC	NC – No Connect	-	H or L or Open. No effect on output frequency or other device functions ^[8]
NF	NF – No Function	-	Solder to pads, connect to VDD or leave open ^{[6][9]}
SCLK	SCLK - Input	200 kΩ Pull-Up	SPI seniá ciock
SCL	SCL - Input	200 kΩ Pull-Up	I ² C serial clock
MISO	MISO – Output	-	SRVserial data
SDA	SDA – Input/Output	200 kΩ Pull Up	(120 Serial data
GND	Ground	- 🗶	connect to ground ^[10]
CLK	Output	-	Regulated LVCMOS
MOSI	MOSI - Input	100 kΩ Pull-Up	SPI serial data input
A1	A1 – Input	100 kΩ Rull-U	I ² C address, most significant bit (MSB), when address is selected via pins
CS	CS – SPI Chip Select	100 kΩ Pull-Up	SPI Chip select, active low
A0	A0 – Input	100 kΩ Pull-Up	I ² C address, least significant bit (LSB), when address is selected via pins
VDD	Power		Connect to VDD ^[11]

Notes:

- 6. If Pin 7 is connected to VDD, a place leakage current should be expected.
- 7. In OE mode, a pull-up resister of $100 \text{ k}\Omega$ or less is recommended if Pin 1 is not externally driven. If Pin 1 needs to be left floating, use the NC option.
- 8. Pin 1 voltage should not exceed device VDD or fall lower than device GND. Either of these conditions may lead to frequency shifts larger than specified limits.
- 9. If connected to VDD, Strime ecommends using narrow traces (e.g. 4 to 6 mil) to avoid significant heat dissipation through these pads.
- 10. Vias from the GND pins to the GND ground plane should be maximized.
- 11. 0.1 μF capacitor in parallel with a 10 μF capacitor are required between VDD and GND.


Board Design Guidelines

For optimal device performance, SiTime recommends adhering to the following board design guidelines. These guidelines ensure that heat generated by SiT5812 is sufficiently expelled through the board.

- The metal layer directly below 5812 is a ground plane (e.g., If 5812 is seated on M1, M2 is a ground plane).
- The ground plane should be continuous in the 9x7 mm area directly under the device.
 - Thermal vias are uniformly distributed across the thermal pad. The distance between vias is less than 1.2 mm.
 - For a board with more than eight metal layers, at least three are plane layers.
 - The metal density in plane layers is maximized.

Table 8. Revision History

Version	Release Date	Change Summary	
0.1	20-Jul-2023	First release, advanced information	
0.11	8-Sep-2023	Revised holdover in features section	
0.12	14-Sep-2023	Revised daily aging specification	609

SiTime Corporation, 5451 Patrick Henry Drive, Santa Clara, CA 95054, USA | Phone: +1-408-328-4400 | Fax: +1-408-328-4439

© SiTime Corporation 2023. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling waterousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. Products sold by SiTime are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE THIS PRODUCT FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES, FOR MILITARY AND AEROSPACE USE OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

For Military and Aerospace applications, contact SiTime.

STime owns altrights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of Corducts or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly material.

SiTime®, DualMEMS®, TurboCompensation® and The Heartbeat of 5G™ are either trademarks or registered trademarks of SiTime Corporation.