

Features

- Any frequency between 80.000001 MHz and 220 MHz with 6 decimal places of accuracy
- 100% pin-to-pin drop-in replacement to quartz-based VCXO
- Frequency stability as tight as ±10 ppm
- Widest pull range options from ±25 ppm to ±1600 ppm
- Industrial or extended commercial temperature range
- Superior pull range linearity of ≤1%, 10 times better than quartz
- LVCMOS/LVTTL compatible output
- Four industry-standard packages: 2.5 mm x 2.0 mm (4-pin), 3.2 mm x 2.5mm (4-pin), 5.0 mm x 3.2 mm (6-pin), 7.0 mm x 5.0 mm (6-pin)
- Instant samples with Time Machine II and field programmable oscillators
- RoHS and REACH compliant, Pb-free, Halogen-free and Antimony-free

Electrical Specifications Table 1. Electrical Characteristics^[1, 2, 3]

Applications

- Telecom clock synchronization, instrumentation
- Low bandwidth analog PLL, jitter cleaner, clock recovery, audio
- Video, 3G/HD-SDI, FPGA, broadband and networking

f F_stab F_aging T_use	80.000001 -10 -25 -50 -5	-	220 Stability a +10	MHz nd Aging	1
F_stab F_aging	-10 -25 -50	Frequency –	/ Stability a +10	nd Aging	
F_aging	-25 -50	-	+10		
F_aging	-25 -50	-	-		
	-50	-	0.5	ppm	Inclusive of Initial tolerance ^[4] at 25°C, and variation over
			+25	ppm	temperature, rated supply voltage and load.
	-5	-	+50	ppm	
T_use		-	+5	ppm	10 years, 25°C
	-20	-	+70	°C	Extended Commercial
	-40	-	+85	°C	Industrial
	Supp	oly Voltage a	and Curren	Consun	nption
Vdd	1.71	1.8	1.89	V	Additional supply voltages between 2.5V and 3.3V can be
	2.25	2.5	2.75	V	supported. Contact SiTime for additional information.
	2.52	2.8	3.08	V]
	2.97	3.3	3.63	V	1
ldd	-	34	36	mA	No load condition, f = 100 MHz, Vdd = 2.5V, 2.8V or 3.3V
	-	30	33	mA	No load condition, f = 100 MHz, Vdd = 1.8V
I_std	-	-	70	μA	Vdd = 2.5V, 2.8V, 3.3V, ST = GND, output is Weakly Pulled Down
	-	-	10	μA	Vdd = 1.8V, \overline{ST} = GND, output is Weakly Pulled Down
		VCXO	Characteri	stics	
PR			, ,	ppm	See the Absolute Pull Range and APR table on page 8
VC_U	1.7	-	-	V	Vdd = 1.8V, Voltage at which maximum deviation is guaranteed.
	2.4	-	-	V	Vdd = 2.5V, Voltage at which maximum deviation is guaranteed.
	2.7	-	-	V	Vdd = 2.8V, Voltage at which maximum deviation is guaranteed.
	3.2	-	-	V	Vdd = 3.3V, Voltage at which maximum deviation is guaranteed.
VC_L	-	-	0.1	V	Voltage at which minimum deviation is guaranteed.
Z_in	100	-	-	kΩ	1
C_in	-	5	-	pF	1
Lin	-	0.1	1	%	1
	F	Positive slop	e	-	1
-					
	I_std PR VC_U VC_L Z_in C_in	Z.97 Idd - I_std - PR ±25, ±50, ±50, ±54, ±50, ±40 VC_U 1.7 2.4 2.7 3.2 VC_L VC_L - Z_in 100 C_in - Lin -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{tabular}{ c c c c c c } \hline 2.97 & 3.3 & 3.63 \\ \hline 2.97 & 3.3 & 3.63 \\ \hline $1dd$ & $-$ & 34 & 36 \\ \hline $-$ & 30 & 33 \\ \hline $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & $-$ & $-$ & 70 \\ \hline $-$ & 70 \\ \hline $-$ $	$\begin{tabular}{ c c c c c c } \hline $1.0 & 1

Electrical Specifications (continued) Table 1. Electrical Characteristics^[1, 2, 3]

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
			LVCMOS O	utput Chara	acteristic	S
Duty Cycle	DC	45	-	55	%	f <= 165 MHz, all Vdds. Refer to Note 11 for definition of Duty Cycle.
		40	-	60	%	f > 165 MHz, all Vdds. Refer to Note 11 for definition of Duty Cycle.
Rise/Fall Time	Tr, Tf	-	1.5	2	ns	Vdd = 1.8V, 2.5V, 2.8V or 3.3V, 10% - 90% Vdd level
Output High Voltage	VOH	90%	-	-	Vdd	IOH = -7 mA (Vdd = 3.0V or 3.3V) IOH = -4 mA (Vdd = 2.8V or 2.5V) IOH = -2 mA (Vdd = 1.8V)
Output Low Voltage	VOL	-	-	10%	Vdd	IOL = 7 mA (Vdd = 3.0V or 3.3V) IOL = 4 mA (Vdd = 2.8V or 2.5V) IOL = 2 mA (Vdd = 1.8V)
	• • • • •		Input	Characteri	stics	
Input Pull-up Impedance	Z_in	-	100	250	kΩ	For the OE/ST pin for 6-pin devices
Input Capacitance	C_in	-	5	-	pF	For the OE/ST pin for 6-pin devices
			Startup a	nd Resume	Timing	
Startup Time	T_start	-	-	10	ms	See Figure 7 for startup resume timing diagram
OE Enable/Disable Time	T_oe	-	-	115	ns	f = 80.000001 MHz, all Vdds. For other freq, T_oe = 100 ns + 3 clock periods
Resume Time	T_resume	-	7	10	ms	See Figure 8 for resume timing diagram
	· ·			Jitter		
RMS Period Jitter	T_jitt	-	1.5	2	ps	f = 156.25 MHz, Vdd = 2.5V, 2.8V or 3.3V
		-	2	3	ps	f = 156.25 MHz, Vdd = 1.8V
RMS Phase Jitter (random)	T_phj	-	0.5	1	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz

Notes:

1. All electrical specifications in the above table are specified with 15 pF output load and for all Vdd(s) unless otherwise stated.

The typical value of any parameter in the Electrical Characteristics table is specified for the nominal value of the highest voltage option for that parameter and at 25°C temperature.

All max and min specifications are guaranteed across rated voltage variations and operating temperature ranges, unless specified otherwise
 Initial tolerance is measured at Vin = Vdd/2

5. Absolute Pull Range (APR) is defined as the guaranteed pull range over temperature and voltage.

6. APR = pull range (PR) - frequency stability (F_stab) - Aging (F_aging)

4 VDD

3 CLK

VDD

NC

CLK

Table 2. Pin Description. 4-Pin Configuration

(For 2.5 x 2.0 mm and 3.2 x 2.5 mm packages)

Pin	Symbol	Functionality		
1	VIN	Input	0-Vdd: produces voltage dependent frequency change	
2	GND	Power	Electrical ground	
3	CLK	Power	Power supply voltage	
4	VDD	Input Power	Oscillator output power ^[7]	

Note:

7. A capacitor value of 0.1 µF between VDD and GND is recommended.

Table 3. Pin Description. 6-Pin Configuration 170 . . .

50x32 (Fo

or 5.0	x 3.2 mm and 7.0) x 5.0 mr	n packages)		
Pin	Symbol		Functionality		
1	VIN	Input	0-Vdd: produces voltage dependent frequency change	Тор	View
		No Connect	H or L or Open: No effect on output frequency or other device functions		
2	NC/OE/ ST	Output Enable	H or Open ^[8] : specified frequency output L: output is high	VIN 1	6
		Standby	H or Open ^[8] : specified frequency output L: output is low (weak pull down) ^[9] . Oscillation stops	NC/OE/ST 2	5
3	GND	Power	Electrical ground	GND 3	4
4	CLK	Output	Oscillator output		
5	NC	No Connect	H or L or Open: No effect on output frequency or other device functions	Figu	re 2.
6	VDD	Power	Power supply voltage ^[10]	5	

Notes:

In OE or ST mode, a pull-up resistor of 10 kΩ or less is recommended if pin 2 in the 6-pin package is not externally driven. If pin 2 needs to be left floating, use the NC option

9. Typical value of the weak pull-down impedance is 5 m Ω

10. A capacitor value of 0.1 μF between VDD and GND is recommended.

Table 4. Absolute Maximum Limits

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
VDD	-0.5	4	V
Electrostatic Discharge	-	2000	V
Soldering Temperature (follow standard Pb free soldering guidelines)	-	260	°C

Table 5. Thermal Consideration

Parameter	θJA, 4 Layer Board (°C/W)	θJA, 2 Layer Board (°C/W)	θJC, Bottom (°C/W)
7050	191	263	30
5032	97	199	24
3225	109	212	27
2520	117	222	26

Table 6. Environmental Compliance

Parameter	Condition/Test Method
Mechanical Shock	MIL-STD-883F, Method 2002
Mechanical Vibration	MIL-STD-883F, Method 2007
Temperature Cycle	JESD22, Method A104
Solderability	MIL-STD-883F, Method 2003
Moisture Sensitivity Level	MSL1 @ 260°C

VIN 1

GND 2

Top View

Figure 1.

Phase Noise Plot

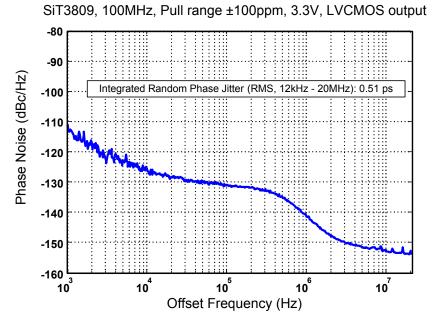


Figure 3. Phase Noise

Test Circuit and Waveform

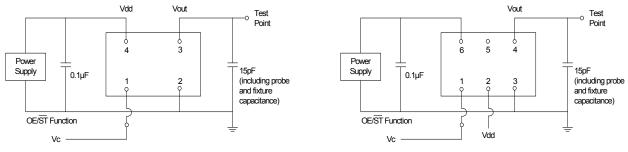
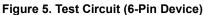



Figure 4. Test Circuit (4-Pin Device)

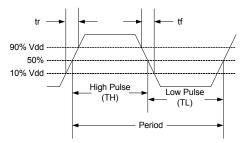


Figure 6. Waveform

Notes:

- 11. Duty Cycle is computed as Duty Cycle = TH/Period.
- 12. SiT3809 supports the configurable duty cycle feature. For custom duty cycle at any given frequency, contact SiTime.

Timing Diagram

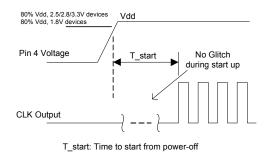
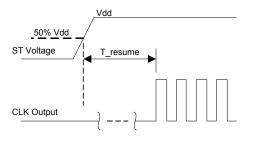
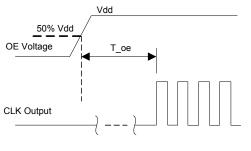




Figure 7. Startup Timing (OE/ST Mode)

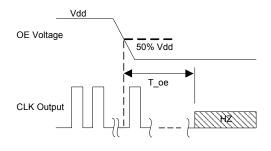

T_resume: Time to resume from ST

Figure 8. Standby Resume Timing (ST Mode Only)

T_oe: Time to re-enable the clock output

Figure 9. OE Enable Timing (OE Mode Only)

T_oe: Time to put the output in High Z mode

Figure 10. OE Disable Timing (OE Mode Only)

Notes:

13. SiT3809 supports "no runt" pulses and "no glitch" output during startup or resume.

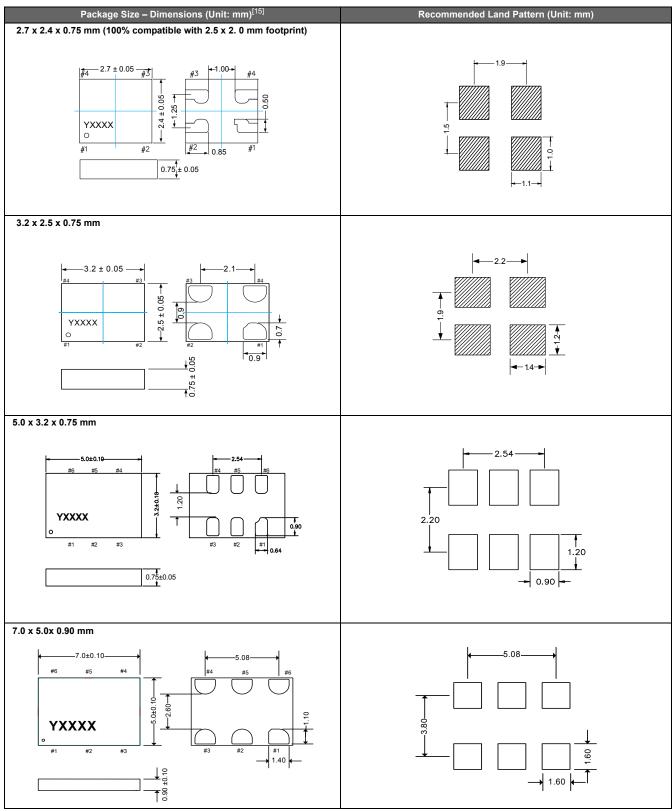
14. SiT3809 supports gated output which is accurate within rated frequency stability from the first cycle.

Instant Samples with Time Machine and Field Programmable Oscillators

SiTime supports a field programmable version of the SiT3809 MEMS VCXO for fast prototyping and real time customization of features. The <u>field programmable devices</u> (FP devices) are available for all four standard SiT3809 package sizes and can be configured to one's exact specification using the <u>Time</u> <u>Machine II</u>, an USB powered MEMS oscillator programmer.

Customizable Features of the SiT3809 FP Devices Include

- Any frequency between 80.000001 MHz to 220 MHz
- Three frequency stability options: ±10 ppm, ±25 ppm, ±50 ppm
- Two operating temperatures: -20 to 70°C or -40 to 85°C
- Four supply voltage options: 1.8V, 2.5V, 2.8V, and 3.3V
- Eight pull range options: ±25 ppm, ±50 ppm, ±100 ppm, ±150 ppm, ±200 ppm, ±400 ppm, ±800 ppm, ±1600 ppm


For more information regarding SiTime's field programmable solutions, visit <u>http://www.sitime.com/time-machine</u> and <u>http://www.sitime.com/fp-devices</u>.

SiT3809 is typically factory-programmed per customer ordering codes for volume delivery.

SiT3809 80 MHz to 220 MHz MEMS VCXO

Dimensions and Patterns

Note:

15.Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.

Ordering Information

Packing Method
"T": 12 mm Tape & Reel, 3ku reel
"Y": 12 mm Tape & Reel, 1ku reel
"D": 8 mm Tape & Reel, 3ku reel
"E": 8 mm Tape & Reel, 1ku reel
Blank for Bulk
Frequency
80.000001 to 220 MHz
80.000001 to 220 MHz
Pull Range Options
"M" for ±25 ppm
"B" for ±50 ppm
"E" for ±100 ppm
"G" for ±150 ppm
"H" for ±200 ppm "X" for ±400 ppm
"Y" for ±400 ppm
"Z" for ±1600 ppm
Feature Pin
"N" for No Connect in 6-pin devices
Default value in 4-pin device
"E" for Output Enable (6-pin only)
"S" for Standby (6-pin only)
Supply Voltogo
Supply Voltage
"18" for 1.8 V ±5%

Note:

16. Contact SiTime for different drive strength to drive multiple loads or to reduce EMI.

Table 7. APR Definition

Absolute pull range (APR) = Norminal pull range (PR) - frequency stability (F_stab) - Aging (F_aging)

	Frequency Stability			
Nominal Pull Range	± 10	± 25	± 50	
		APR (PPM)		
± 25	± 10	-	-	
± 50	± 35	± 20	-	
± 100	± 85	± 70	± 45	
± 150	± 135	± 120	± 95	
± 200	± 185	± 170	± 145	
± 400	± 385	± 370	± 345	
± 800	± 785	± 770	± 745	
± 1600	± 1585	± 1570	± 1545	

Table 8. Ordering Codes for Supported Tape & Reel Packing Method^[17]

Device Size	12 mm T&R (3ku)	12 mm T&R (1ku)	8 mm T&R (3ku)	8 mm T&R 1ku)
2.5 x 2.0 mm	-	-	D	E
3.2 x 2.5 mm	-	-	D	E
5.0 x 3.2 mm	Т	Y	-	-
7.0 x 5.0 mm	Т	Y	-	_

Note:

17. "-" indicates "not available."

Table 9. Additional Information

Document	Description	Download Link
Manufacturing Notes	Tape & Reel dimension, reflow profile and other manufacturing related info	http://www.sitime.com/component/docman/doc_download/85-manufaturing-notes-for-sitime-oscillators
Qualification Reports	RoHS report, reliability reports, composition reports	http://www.sitime.com/support/quality-and-reliability
Performance Reports	Additional performance data such as phase noise, current consumption and jitter for selected frequencies	http://www.sitime.com/support/performance-measurement-report
Termination Techniques	Termination design recommendations	http://www.sitime.com/support/application-notes
Layout Techniques	Layout recommendations	http://www.sitime.com/support/application-notes
VCXO Specifications	Definition of key VCXO specifications such as APR and Kv	http://www.sitime.com/support2/documents/AN10020_VCXO_SpecDefinitions_rev1.pdf
VCXO in PLL Design	Selection of VCXO parameters and trade-offs in PLL designs	http://www.sitime.com/support2/documents/AN10021_VCXO_PLL_Design_Guidelines_1v0.pdf

Revision History

Table 10. Datasheet Version and Change Log

Version	Release Date	Change Summary
0.6	1/24/2013	Preliminary
1.0	3/18/14	 Preliminary removed from title Updated features and application Updated electrical specifications table Updated figure 4, Added new 6-pin device for figure 5 Updated timing diagrams Updated ordering information drawing Updated ordering codes for tape and reel table Reformatted additional information table columns
1.01	1/8/15	Corrected CLK and VDD functionality description in Table 2 Revised VIN functionality description in Table 3

© SiTime Corporation 2015. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. Products sold by SiTime are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.

Supplemental Information

The Supplemental Information section is not part of the datasheet and is for informational purposes only.

Silicon MEMS Outperforms Quartz

Best Reliability

Silicon is inherently more reliable than quartz. Unlike quartz suppliers, SiTime has in-house MEMS and analog CMOS expertise, which allows SiTime to develop the most reliable products. Figure 1 shows a comparison with quartz technology.

Why is SiTime Best in Class:

- SiTime's MEMS resonators are vacuum sealed using an advanced EpiSeal[™] process, which eliminates foreign particles and improves long term aging and reliability
- · World-class MEMS and CMOS design expertise

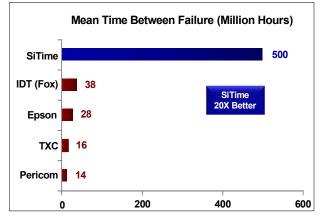


Figure 1. Reliability Comparison^[1]

Best Aging

Unlike quartz, MEMS oscillators have excellent long term aging performance which is why every new SiTime product specifies 10-year aging. A comparison is shown in Figure 2.

Why is SiTime Best in Class:

- SiTime's MEMS resonators are vacuum sealed using an advanced EpiSeal process, which eliminates foreign particles and improves long term aging and reliability
- Inherently better immunity of electrostatically driven MEMS resonator

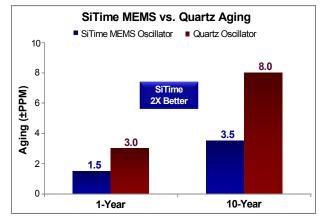


Figure 2. Aging Comparison^[2]

Best Electro Magnetic Susceptibility (EMS)

SiTime's oscillators in plastic packages are up to 54 times more immune to external electromagnetic fields than quartz oscillators as shown in Figure 3.

Why is SiTime Best in Class:

- Internal differential architecture for best common mode noise rejection
- Electrostatically driven MEMS resonator is more immune to EMS

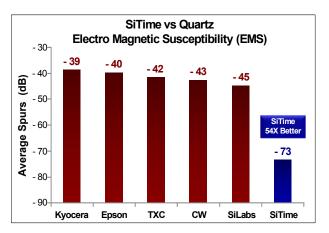


Figure 3. Electro Magnetic Susceptibility (EMS)^[3]

Best Power Supply Noise Rejection

SiTime's MEMS oscillators are more resilient against noise on the power supply. A comparison is shown in Figure 4.

Why is SiTime Best in Class:

- On-chip regulators and internal differential architecture for common mode noise rejection
- · Best analog CMOS design expertise

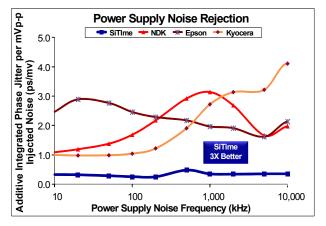


Figure 4. Power Supply Noise Rejection^[4]

Best Vibration Robustness

High-vibration environments are all around us. All electronics, from handheld devices to enterprise servers and storage systems are subject to vibration. Figure 5 shows a comparison of vibration robustness.

Why is SiTime Best in Class:

- The moving mass of SiTime's MEMS resonators is up to 3000 times smaller than quartz
- Center-anchored MEMS resonator is the most robust design

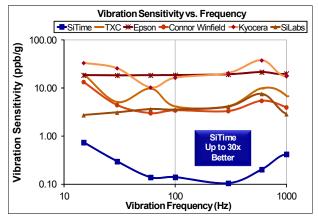


Figure 5. Vibration Robustness^[5]

Notes:

- 1. Data Source: Reliability documents of named companies.
- 2. Data source: SiTime and quartz oscillator devices datasheets.
- 3. Test conditions for Electro Magnetic Susceptibility (EMS):
 - According to IEC EN61000-4.3 (Electromagnetic compatibility standard)
 Field strength: 3V/m
 - Field strength: 3V/m
 - Radiated signal modulation: AM 1 kHz at 80% depth
 - Carrier frequency scan: 80 MHz 1 GHz in 1% steps
 - Antenna polarization: Vertical
 - DUT position: Center aligned to antenna

Devices used in this test:

SiTime, SiT9120AC-1D2-33E156.250000 - MEMS based - 156.25 MHz Epson, EG-2102CA 156.2500M-PHPAL3 - SAW based - 156.25 MHz TXC, BB-156.250MBE-T - 3rd Overtone quartz based - 156.25 MHz Kyocera, KC7050T156.250P30E00 - SAW based - 156.25 MHz Connor Winfield (CW), P123-156.25M - 3rd overtone quartz based - 156.25 MHz SiLabs, Si590AB-BDG - 3rd overtone quartz based - 156.25 MHz

4. 50 mV pk-pk Sinusoidal voltage.

Devices used in this test:

SiTime, SiT8208AI-33-33E-25.000000, MEMS based - 25 MHz NDK, NZ2523SB-25.6M - quartz based - 25.6 MHz

- Kyocera, KC2016B25M0C1GE00 quartz based 25 MHz
- Epson, SG-310SCF-25M0-MB3 guartz based 25 MHz
- 5. Devices used in this test: same as EMS test stated in Note 3.
- 6. Test conditions for shock test:
 - MIL-STD-883F Method 2002
 - · Condition A: half sine wave shock pulse, 500-g, 1ms
 - · Continuous frequency measurement in 100 µs gate time for 10 seconds
 - Devices used in this test: same as EMS test stated in Note 3

7. Additional data, including setup and detailed results, is available upon request to qualified customers. Please contact productsupport@sitime.com.

Best Shock Robustness

SiTime's oscillators can withstand at least 50,000 g shock. They all maintain their electrical performance in operation during shock events. A comparison with quartz devices is shown in Figure 6.

Why is SiTime Best in Class:

- The moving mass of SiTime's MEMS resonators is up to 3000 times smaller than quartz
- Center-anchored MEMS resonator is the most robust design

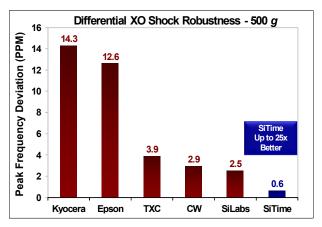


Figure 6. Shock Robustness^[6]

Document Feedback Form

SiTime values your below to productsup	input in improving our documentation. Click port@sitime.com.	<u>here</u> for our onli	ne feedback fo	rm or fill out an	d email the forn
1. Does the Electrical Characteristics table provide complete information?			Yes	No	
If No, what paramete	ers are missing?				
2. Is the organization of this document easy to follow?			Yes	No	
If "No," please sugge	est improvements that we can make:				
3. Is there any appli	cation specific information that you would lik	e to see in this c	document? (Ch	eck all that app	ly)
EMI	Termination recommendations	Shock an	d vibration perf	ormance	Other
If "Other," please sp	ecify:				
4. Are there any errors in this document?		Yes	No		
If "Yes", please spec	tify (what and where):				
5. Do you have addi	tional recommendations for this document?				
Name					
Title					
Company					
Address					
City / State or Provir	nce / Postal Code / Country				
Telephone					
Application					
Would you like a rep	oly? Yes No				

Thank you for your feedback. Please click the email icon in your Adobe Reader tool bar and send to productsupport@sitime.com. Or you may use our online feedback form.